[go: up one dir, main page]

login
A352604
Primes p such that p^2+3*p+1 and p^2+p-1 are also prime.
1
2, 3, 5, 19, 53, 59, 163, 263, 349, 373, 419, 449, 499, 1013, 1093, 1259, 1303, 1423, 1489, 1493, 1669, 1759, 2069, 2729, 2879, 3463, 3943, 4159, 4243, 4283, 4493, 4603, 4793, 4969, 5113, 5303, 5563, 6323, 6599, 6803, 6829, 6883, 7369, 7523, 7529, 7963, 8039, 8713, 8969, 9043, 9173, 9293, 9623
OFFSET
1,1
COMMENTS
Primes p such that (p-1)*p+(p-1)+p and p*(p+1)+p+(p+1) are also prime.
LINKS
EXAMPLE
a(3) = 5 is a term because 5, 5^2+3*5+1 = 41 and 5^2+5-1 = 29 are all prime.
MAPLE
select(t -> isprime(t^2+3*t+1) and isprime(t^2+t-1), [seq(ithprime(i), i=1..10000)]);
PROG
(Python)
from itertools import islice
from sympy import isprime, nextprime
def agen():
p = 2
while True:
if isprime(p**2 + 3*p + 1) and isprime(p**2 + p - 1):
yield p
p = nextprime(p)
print(list(islice(agen(), 53))) # Michael S. Branicky, Mar 22 2022
CROSSREFS
Intersection of A053184 and A153590.
Sequence in context: A140560 A118625 A031133 * A235622 A235637 A028490
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Mar 22 2022
STATUS
approved