[go: up one dir, main page]

login
Expansion of e.g.f. 1/(1 + log(1-x))^x.
3

%I #15 Jun 04 2022 02:30:42

%S 1,0,2,6,40,295,2688,28588,348864,4802922,73652110,1245046836,

%T 23003289912,461188427544,9972307487660,231341792369010,

%U 5731422576446208,151032969213699536,4218265874407103640,124471244064061267032,3869361472890037713560

%N Expansion of e.g.f. 1/(1 + log(1-x))^x.

%F a(0) = 1; a(n) = Sum_{k=1..n} A052809(k) * binomial(n-1,k-1) * a(n-k).

%F a(n) ~ n! * exp(n) / (Gamma(1 - 1/exp(1)) * n^(1/exp(1)) * (exp(1) - 1)^(n + 1 - 1/exp(1))). - _Vaclav Kotesovec_, Jun 04 2022

%o (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+log(1-x))^x))

%Y Cf. A052801, A052809, A354122, A354123.

%K nonn

%O 0,3

%A _Seiichi Manyama_, May 20 2022