OFFSET
1,2
COMMENTS
Differs from A320340 in having 105: (4,3,2), 315: (4,3,2,2), 455: (6,4,3), etc.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers with no adjacent prime indices of quotient 1/2.
EXAMPLE
The terms and their prime indices begin:
1: {} 19: {8} 38: {1,8}
2: {1} 20: {1,1,3} 39: {2,6}
3: {2} 22: {1,5} 40: {1,1,1,3}
4: {1,1} 23: {9} 41: {13}
5: {3} 25: {3,3} 43: {14}
7: {4} 26: {1,6} 44: {1,1,5}
8: {1,1,1} 27: {2,2,2} 45: {2,2,3}
9: {2,2} 28: {1,1,4} 46: {1,9}
10: {1,3} 29: {10} 47: {15}
11: {5} 31: {11} 49: {4,4}
13: {6} 32: {1,1,1,1,1} 50: {1,3,3}
14: {1,4} 33: {2,5} 51: {2,7}
15: {2,3} 34: {1,7} 52: {1,1,6}
16: {1,1,1,1} 35: {3,4} 53: {16}
17: {7} 37: {12} 55: {3,5}
MATHEMATICA
primeptn[n_]:=If[n==1, {}, Reverse[Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]]];
Select[Range[100], And@@Table[FreeQ[Divide@@@Partition[primeptn[#], 2, 1], 2], {i, 2, PrimeOmega[#]}]&]
CROSSREFS
The sets version (subsets of prescribed maximum) is counted by A045691.
These partitions are counted by A350837.
The strict case is counted by A350840.
A000041 = integer partitions.
A000045 = sets containing n with all differences > 2.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 18 2022
STATUS
approved