
Lemma. (1) The only solutions to

x4 − 2y2 = 1

are (x, y) = (±1, 0).
(2) The only solutions to

x4 − 2y2 = −1

are (x, y) = (±1,±1).
(3) The only solutions to

x2 − 2y4 = 1

are (x, y) = (±1, 0).
(4) The only solutions to

x2 − 2y4 = −1

are (x, y) = (±1,±1), (±239,±13).

Proof. (1) Let X = 2x2, Y = 4xy, then

Y 2 = X3 − 4X.

Type E=ellinit([0,0,0,-4,0]); ellanalyticrank(E); elltors(E); in PARI/GP to
see that this is an elliptic curve with rank 0 and torsion group Z/2Z ⊕ Z/2Z, so the only
solutions (X,Y ) are (X,Y ) = (0, 0), (±2, 0), corresponding to (x, y) = (±1, 0). (See also
https://www.lmfdb.org/EllipticCurve/Q/64/a/3 for the integral points on the elliptic
curve).

Alternative elementary solution. Let

L0 = 1, L1 = 1, Ln+2 = 2Ln+1 + Ln, ∀n ∈ N (A001333);
P0 = 0, P1 = 1, Pn+2 = 2Pn+1 + Pn, ∀n ∈ N (A000129),

then all solutions to x2 − 2y2 = 1 are given by (x, y) = (L2k, P2k), and all solutions to
x2 − 2y2 = −1 are given by (x, y) = (L2k+1, P2k+1). Note that L2k = 2L2

k + (−1)k−1, so if
L2k = x2

0 is a square, then (x0, Lk) itself satisfies x2 − 2y2 = (−1)k−1, so (x0, Lk) = (Lm, Pm)
for some m ≡ k − 1 (mod 2). But we have 2 = P2 < L2 < P3 < L3 < · · · , so the only
possibility is k = 0 and m = 1, and x0 = 1.

(2) Let X = 2x2, Y = 4xy, then

Y 2 = X3 + 4X.

Type E=ellinit([0,0,0,4,0]); ellanalyticrank(E); elltors(E); in PARI/GP to see
that this is an elliptic curve with rank 0 and torsion group Z/4Z, so the only solutions
(X,Y ) are (X,Y ) = (0, 0), (2,±4), corresponding to (x, y) = (±1,±2). (See also https:
//www.lmfdb.org/EllipticCurve/Q/32/a/4 for the integral points on the elliptic curve).

(3) Let X = 2y2, Y = 2xy, then

Y 2 = X3 + 2X.
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Type E=ellinit([0,0,0,2,0]); ellanalyticrank(E); elltors(E); in PARI/GP to see
that this is an elliptic curve with rank 0 and torsion group Z/2Z, so the only solutions (X,Y )
are (X,Y ) = (0, 0), corresponding to (x, y) = (±1, 0). (See also https://www.lmfdb.org/
EllipticCurve/Q/256/c/2 for the integral points on the elliptic curve).

Alternative elementary solution. Note that gcd(Ln, Pn) = 1 for all n ∈ N (where {Ln}
and {Pn} are defined in the proof of (1)), and P2k = 2LkPk. If P2k is a square, then since
Lk is odd, both Lk and 2Pk must be squares. We deduce then that k is even (otherwise
2Pk ≡ 2 (mod 4)). But (1) shows that Lk cannot be a square for even k unless k = 0.

(4) Let X = 2y2, Y = 2xy, then

Y 2 = X3 − 2X.

This is an elliptic curve with rank 1, and the integral points are given in https://www.lmfdb.
org/EllipticCurve/Q/256/b/1 as (X,Y ) = (−1,±1), (0, 0), (2,±2), (338,±6214), corre-
sponding to (x, y) = (±1,±1), (±239,±13). (See https://www.impan.pl/en/publishing-house/
journals-and-series/colloquium-mathematicum/all/109/1/87140 for a complete proof
of the integral points on the elliptic curve).

Theorem. Let N be a even number such that N/2 has only prime factors congruent
to 1 modulo 4, then

d(p2 − 1) = N

has no odd solutions p other than d(72 − 1) = 10 and d(92 − 1) = 10, where d(n) (A000005)
is the number of divisors of n.

Proof. In general, let

Nm,r := {N : all except one prime factors ofN are congruent to 1modulom,

and one prime factor ofN is congruent to 1 + rmodulom}, 0 ≤ r ≤ m− 1,

then d(n) ∈ Nm,r implies that n = mkpr for some m ∈ N and prime p. Indeed, if we write
N ∈ Nm,r as a product of numbers ≥ 2 arbitrarily, then one factor is congruent to 1 + r
modulo m and the others are congruent to 1 modulo m, so d(n) = N implies that one
prime factor of n has multiplicity congruent to r modulo m and the other prime factors have
multiplicities divisible by m.

Here we have N ∈ N4,1. Since 8 | p2 − 1 for odd p, if d(p2 − 1) = N , then

p2 − 1 = 16m4P

for m ∈ N and prime P . (Here m can be even, and P can be a factor of 2m). Since
gcd(p− 1, p+ 1) = 2, we have{

p± 1 = 8M4P

p∓ 1 = 2N4
or

{
p± 1 = 8M4

p∓ 1 = 2N4P

for some gcd(2MP,N) = 1 in the first case and gcd(2M,NP ) = 1 in the second case. In the
first case we have

N4 − 4M4P = ±1,
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so in particular N4 − 4M2P = 1 by modulo 4, or (N2 − 1)(N2 + 1) = 4M4P . Since
gcd(N2 − 1, N 2 + 1) = 2, we have {

N2 ± 1 = 2M4
1P

N2 ∓ 1 = 2M4
2

which has only solutions (M2, N) = (13, 239) by the parts (3) (4) in the Lemma since N > 1,
corresponding to M4

1P = 28560 which is impossible. In the second case we have

N4P − 4M4 = ±1.

If N4P = 4M4 − 1 = (2M2 − 1)(2M2 + 1), then gcd(2M2 − 1, 2M2 + 1) = 1 implies that{
2M2 ± 1 = N4

1P

2M2 ∓ 1 = N4
2

which has only solutions (M,N2) = (1, 1) by the parts (1) (2) in the Lemma, corresponding
to M1 = 1 and P = 3. If N4P = 4M4 + 1 = (2M2 − 2M + 1)(2M2 + 2M + 1), then
gcd(2M2−2M +1, 2M2+2M +1) = gcd(2M2−2M +1, 4M) = gcd(2M2−2M +1,M) = 1
implies that {

2M2 ∓ 2M + 1 = N4
1P

2M2 ± 2M + 1 = N4
2

or
(2M ± 1)2 − 2N4

2 = −1.

The solutions to the last equation are (M,N2) = (1, 1), (119, 13), (120, 13) by the parts (4)
in the Lemma, corresponding to N4

1P = 5, 28085, 29041 where the last two are not possible.
In conclusion, we have {

p+ 1 = 8

p− 1 = 6
or

{
p− 1 = 8;

p+ 1 = 10,

so p = 7 or p = 9.
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Similarly, let r ≥ 3 be an odd number, and suppose that N be a even number such that
N/2 has only prime factors congruent to 1 modulo 2r, then if d(p2 − 1) = N for some odd
p, then

p2 − 1 = 22rm2rP

for m ∈ N and prime P , and we have{
p± 1 = 22r−1M2rP

p∓ 1 = 2N2r
or

{
p± 1 = 22r−1M2r;

p∓ 1 = 2N2rP,

corresponding to
p = 2N2r + 1, 22r−2M2rP = N2r − 1;

p = 22r−1M2r − 1, N 2rP = 22r−2M2r − 1;

p = 22r−1M2r + 1, N 2rP = 22r−2M2r + 1

(note that N2r − 22r−2M2rP = −1 is impossible modulo 22r−2). We have then

p = 2N2r + 1,

{
22r−3M2r

1 P = N r − 1;

2M2r
2 = N r + 1,

(1)

p = 2N2r + 1,

{
22r−3M2r

1 = N r − 1;

2M2r
2 P = N r + 1,

(2)

p = 22r−1M2r − 1,

{
N2r

1 P = 2r−1M r − 1;

N2r
2 = 2r−1M r + 1,

(3)

p = 22r−1M2r + 1, N 2rP = 22r−2M2r + 1 (4)

(note that
{
22r−3M2r

1 P = N r + 1

2M2r
2 = N r − 1

and
{
22r−3M2r

1 = N r + 1

2M2r
2 P = N r − 1

is impossible modulo 22r−4

in (??) and (??), and
{
N2r

1 P = 2r−1M r + 1

N2r
2 = 2r−1M r − 1

is impossible modulo 2r−1 in (??)). But:

• 2M2r
2 = N r +1 in (??) can be written as xr − 2yr = −1, which is impossible by ”Rational

approximation to algebraic numbers of small height: the Diophantine equation |axn −
byn| = 1” https://personal.math.ubc.ca/~bennett/B-Crelle2.pdf;

• 22r−3M2r
1 = N r − 1 in (??) can be written as xr − 2y2 = 1 for y = 2r−2M r

1 , which
is impossible by ”A Note on Two Diophantine Equations” https://www.m-hikari.com/
ams/ams-2012/ams-133-136-2012/taoAMS133-136-2012-2.pdf;

• From N2r
2 = 2r−1M r + 1 in (??), we get{

N r
2 ± 1 = 2r−2M r;

N r
2 ∓ 1 = 2M r,

and the second line is impossible by ”Rational approximation to algebraic numbers of
small height: the Diophantine equation |axn − byn| = 1”.
In conclusion: Only (??) is nontrivial, and p must be of the form p = 22r−1M2r + 1.

4

https://personal.math.ubc.ca/~bennett/B-Crelle2.pdf
https://www.m-hikari.com/ams/ams-2012/ams-133-136-2012/taoAMS133-136-2012-2.pdf
https://www.m-hikari.com/ams/ams-2012/ams-133-136-2012/taoAMS133-136-2012-2.pdf

