
Question. Let

S := {N even : Ω(N) ≤ 3} ∪ {16, 24, 36, 54},

where Ω(n) (A001222) is the number of prime factors of n counted with multiplicity. For
each N ∈ S, find all p ≡ 1, 5 (mod 6) such that d(p2 − 1) = N , where d(n) (A000005) is the
number of divisors of n.

Lemma 1. The only solutions to

3m − 2n = ±1

are (m,n) = (0, 1), (1, 1), (1, 2), (2, 3).

Proof. Suppose that n ≥ 3. Since

3m ≡ 1, 3 (mod 8),

we must have 3m − 2n = 1. But 3m ≡ 1 (mod 2n) implies that

2n−2 | m,

so 3t − 4t ≤ 1 for t = 2n−2 ≥ 2, and then we get (m,n) = (2, 3).

Lemma 2. The only solution to

3m − 2nP = ±1, n ≥ 3, P prime

is (m,n, P ) = (4, 4, 5).

Proof. Similarly as in Lemma 1 we have 3m − 2nP = 1, 2n−2 | m, and

32
n−2 − 1

2n

∣∣∣∣ 3m − 1

2n
= P.

Let Tn :=
32

n−2 − 1

2n
(A068531) for n ≥ 3, then Tn | Tn+1, so Tn is not prime for n ≥ 5. If

n = 4, then (m,P ) = (4, 5). If n = 3, write m = 2k, then

P =
32k − 1

8
=

(3k − 1)(3k + 1)

8
,

impossible.

Lemma 3. The only solutions to

3mP − 2n = ±1, m ≥ 2, P prime

is (m,n, P ) = (2, 6, 7), (3, 9, 19).
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Proof. We have 2n ≡ ±1 (mod 3m), so

3m−1 | n,

and
23

m−1
+ 1

3m

∣∣∣∣ 2n − (−1)n

3m
= P.

Let Tm :=
23

m−1
+ 1

3m
(A234039) for m ≥ 1, then Tm | Tm+1, so Tm is not prime for m ≥ 4. If

m = 3, then (n, P ) = (9, 19). If m = 2, write n = 3k, then

P =
23k − (−1)k

9
=

(2k − (−1)k)(22k + (−2)k + 1)

9
,

and the only possiblility is (n, P ) = (6, 7).

Lemma 4. The only solutions to

3× 2n ± 1 = mk, k ≥ 2

are (n,m, k) = (0, 2, 2), (3, 5, 2), (4, 7, 2).

Proof. Suppose that n ≥ 3. We have mk ≡ ±1 (mod 2n). If k is odd, then

m ≡ (±1)k
−1 mod 2n−2

= ±1(mod 2n),

so m ≥ 2n − 1, and 3t + 1 ≥ (t− 1)3 for t = 2n ≥ 8, which is impossible. So k is even, and
we can suppose that k = 2. Then the equation implies that

3× 2n + 1 = m2, m ≡ ±1 (mod 2n−1),

so m ≥ 2n−1 − 1, and 6t + 1 ≥ (t − 1)2 for t = 2n−1 ≥ 4, and then we get (n,m, k) =
(3, 5, 2), (4, 7, 2).

Lemma 5. The only solutions to

3x2 − 2n = ±1

are (n, x) = (0, 0), (1, 1), (2, 1).

Proof. If n ≥ 3, then 3x2 ≡ 3 (mod 8), impossible.

Note that 24 | (p2 − 1), so if d(p2 − 1) = N with N ∈ S, then p2 − 1 has at most three
distinct prime factors, since

S = N∗ \ {e1 · · · eℓ : ℓ ≥ 4, ei ≥ 2 (i = 2, · · · , ℓ), e1 ≥ 4}.

Case 1. p2−1 has only two distinct factors. Then p2−1 = 2i×3j for i ≥ 3, j ≥ 1. Since
gcd(p− 1, p+ 1) = 2, we have {

p∓ 1 = 2i−1;

p± 1 = 2× 3j,
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so 3j − 2i−2 = ±1. This implies

p2 − 1 = 23 × 31, 24 × 31, 25 × 32 = 24, 48, 288,

by Lemma 1, corresponding to

(N, p) = (8, 5), (10, 7), (18, 17).

Case 2. p2 − 1 has three distinct factors. If Ω(N) = 3, there must be a factor with
multiplicity 1 since N has the factor 2. Write p2 − 1 = 2i × 3j × P (j ≥ 1) or 2i × 3 × P j

(j ≥ 2) for i ≥ 3 and a prime P ≥ 5. Note that the three prime factors of N are then i+ 1,
j + 1, and 2, so i ≥ 4 is even, and j is even if j ≥ 2. If N = 16, 24, 36, or 54, then

p2 − 1 =23 × 3× P, 25 × 3× P, 23 × 32 × P, 23 × 3× P 2,

28 × 3× P, 25 × 32 × P, 25 × 3× P 2, 23 × 32 × P 2,

28 × 32 × P, 28 × 3× P 2, 25 × 32 × P 2,

so other than
p2 − 1 = 23 × 32 × P 2, 25 × 32 × P 2,

p2 − 1 is also of the form 2i × 3j × P (j ≥ 1) or 2i × 3 × P j (j ≥ 2), where (i, j) =
(3, 1), (3, 2), (5, 1), (5, 2), (8, 1), (8, 2).

We have{
p± 1 = 2i−1

p∓ 1 = 2× 3j × P

{
p± 1 = 2i−1 × 3j

p∓ 1 = 2× P

{
p± 1 = 2i−1 × P

p∓ 1 = 2× 3j{
p± 1 = 2i−1

p∓ 1 = 2× 3× P j

{
p± 1 = 2i−1 × 3;

p∓ 1 = 2× P j,

corresponding to

3j × P − 2i−2 = ±1; (1)
P − 2i−2 × 3j = ±1; (2)
3j − 2i−2 × P = ±1; (3)
3× P j − 2i−2 = ±1 (j ≥ 2); (4)
P j − 2i−2 × 3 = ±1 (j ≥ 2), (5)

Note that (4) is impossible by Lemma 5 since j is even, and (5) implies

p2 − 1 = 25 × 3× 52, 26 × 3× 72 = 2400, 9408,

by Lemma 4, corresponding to

(N, p) = (36, 49), (42, 97).
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For (3), note that (i, j) = (3, 2) gives the solution

p2 − 1 = 23 × 32 × 5 = 360,

corresponding to (N, p) = (24, 19). If i ≥ 5, then Lemma 2 tells that

p2 − 1 = 26 × 34 × 5 = 25920,

corresponding to (N, p) = (70, 161). If i = 4, then

P =
3j − (−1)j

4
.

But Uj :=
3j − (−1)j

4
(A015518) forms a divisibility sequence (Uj | Uk if and only if j | k),

so j must itself be prime, which implies j = 2 and P = 2, contradicting P ≥ 5.
For (1), if j ≥ 2, then Lemma 3 tells that

p2 − 1 = 28 × 32 × 7, 211 × 33 × 19 = 16128, 1050624,

corresponding to (N, p) = (54, 127), (96, 1025). If j = 1, and

P =
2i−2 − (−1)i−2

3
.

But Ui :=
2i − (−1)i

3
(A001045) forms a divisibility sequence, so either i − 2 = 4, either

i − 2 ≥ 3 must itself be prime. Since i is either 3, 5 or even, we see that i = 6 (i = 5 gives
P = 3), so

p2 − 1 = 26 × 31 × 5 + 1 = 960,

corresponding to
(N, p) = (28, 31).

At last, we see that (2) is the only nontrivial equation, and we consider separately

P = 2i−2 × 3j − 1, p = 2i−1 × 3j − 1; (2′)
P = 2i−2 × 3j + 1, p = 2i−1 × 3j + 1. (2′′)

If N = 16, 24, 36, or 54, meaning that (i, j) = (3, 1), (5, 1), (3, 2), (5, 2), (8, 1), (8, 2), then

(P, p) = (5, 11), (7, 13), (17, 35), (19, 37), (23, 47),

(71, 143), (73, 145), (191, 383), (193, 385), (577, 1153),

corresponding to

(N, p) = (16, 11), (16, 13), (24, 35), (24, 37), (24, 47),

(36, 143), (36, 145), (36, 383), (36, 385), (54, 1153).

For Ω(N) = 3, note that (2′) can only have solution when j = 1, otherwise 2i−2 × 3j is a
square. Doing the very same process to

p2 − 1 = 23 × 32 × P 2, 25 × 32 × P 2,

we can see that there are no solutions corresponding to these two cases.
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Conclusion. Let K(N) be the set of p ≡ 1, 5 (mod 6) such that d(p2 − 1) = N for

K ∈ S = {N even : Ω(N) ≤ 3} ∪ {16, 24, 36, 54}.

Then:

K(10) = {7⋆}, K(N) = ∅ forΩ(N) ≤ 2, N ̸= 10;

K(8) = {5⋆}, K(12) = ∅, K(18) = {17⋆},
K(28) = {31⋆, 95}, K(42) = {97⋆}, K(70) = {161, 2593⋆, 5833};

K(16) = {11⋆, 13⋆}, K(24) = {19⋆, 35, 37⋆, 47⋆},
K(36) = {49, 143, 145, 383⋆, 385}, K(54) = {127⋆, 1153⋆}

(⋆ corresponds to primes). For other N with Ω(N) = 3, write N = 2qr with q ≤ r primes,
then each solution corresponds to one of the three combinations (P, p) with prime value P :

P = 2r−3 × 3− 1, p = 2r−2 × 3− 1 (q = 2);

P = 2r−3 × 3q−1 + 1, p = 2r−2 × 3q−1 + 1;

P = 2q−3 × 3r−1 + 1, p = 2q−2 × 3r−1 + 1 (r > q ≥ 5).

(This is what gives the additional (N, p) = (28, 95), (70, 2593), (70, 5833)). In particular
|K(N)| ≤ 2 for each certain N .

Conjecture 1. Suppose that Ω(N) = 3. Other than

K(20) = {23⋆, 25}, K(28) = {31⋆, 95}, K(70) = {161, 2593⋆, 5833},
K(182) = {1492993⋆, 17006113},

we have |K(N)| ≤ 1; in other words, we have

r prime, 2r−3 × 3− 1, 2r−3 × 3 + 1 both primes =⇒ r = 5

and

r > q ≥ 5 primes, 2r−3 × 3q−1 + 1, 2q−3 × 3r−1 + 1 both primes =⇒ (q, r) = (5, 7), (7, 13).

Note that if we require p to be prime (not only p ≡ 1, 5 (mod 6)), then such solutions
are very rare, because it does not happen very often that

2i × 3j − 1, 2i+1 × 3j − 1

or
2i × 3j + 1, 2i+1 × 3j + 1

turn out to be both primes. In fact, I conjecture that
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Conjecture 2. The largest N with Ω(N) = 3 such that there exists some prime p
satisfying d(p2 − 1) = N is N = 518; in other words, we have

r prime, 2r−3 × 3− 1, 2r−2 × 3− 1 both primes =⇒ r = 5,

r ≥ q primes, 2r−3 × 3q−1 + 1, 2r−2 × 3q−1 + 1 both primes =⇒ (q, r) = (3, 5), (5, 7), (7, 13),

and

r > q ≥ 5 primes, 2q−3 × 3r−1 + 1, 2q−2 × 3r−1 + 1 both primes =⇒ (q, r) = (7, 37).

In particular, the complete list of solutions to

Ω(N) = 3, p prime, d(p2 − 1) = N

is

(N, p) = (8, 5), (18, 17), (20, 23), (28, 31), (30, 73), (42, 97),

(70, 2593), (182, 1492993), (518, 4803028329503971873).

As an end, it is natural to guess that

Conjecture 3. For even N with Ω(N) ≥ 4, if N ̸= 16, 24, 36, or 54, then there exists
infinitely many primes p such that

d(p2 − 1) = N.

Let’s see what is needed in the conjecture for (perhaps the easiest) case 4 | N , Ω(N) ≥ 4,
if N ̸= 16, 24, 36. We can write N = (i+1)(j+1)×2×2 for i ≥ 3 and j ≥ 1, so it suffices to
show that for every i ≥ 3 and j ≥ 1, there exists infinitely many triples or primes (p, P,Q)
such that

p2 − 1 = 2i × 3j × PQ, P,Q ≥ 5, P ̸= Q;

in other words, such that{
p± 1 = 2i−1

p∓ 1 = 2× 3j × PQ

{
p± 1 = 2i−1 × 3j

p∓ 1 = 2× PQ

{
p± 1 = 2i−1 × PQ

p∓ 1 = 2× 3j{
p± 1 = 2i−1 × P

p∓ 1 = 2× 3j ×Q

{
p± 1 = 2i−1 × 3j × P ;

p∓ 1 = 2×Q,

corresponding to
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i ̸= 8, j = 1, PQ =
2i−2 − (−1)i−2

3
, p = 2i−1 + (−1)i−1; 1 (6)

PQ = 2i−2 × 3j ± 1, p = 2i−1 × 3j ± 1; (7)

i = 4, PQ =
3j − (−1)j

4
, p = 2× 3j − (−1)j; (8)

3jQ = 2i−2P ± 1, p = 2i−1P ± 1; (9)
Q = 2i−2 × 3jP ± 1, p = 2i−1 × 3jP ± 1. (10)

But in general, there is no polynomial f such that f(p) is proved to be prime infinitely often
for primes p, so it may be hard to prove that equations of type (9) or (10) has infinitely
many solutions (p, P,Q) that are triples or primes. The case 4 ∤ N (e.g. N = 90, 162) may
be even harder since p2− 1 can have at most one prime factor with multiplicity 1. (We have
d(p2 − 1) = 90 for primes

p =199, 8713, 449353, 2626633, 11577673, 53127433,

59754313, 149091913, 177698953, 213252553, 230437513, · · · ,

and d(p2 − 1) = 162 for primes

p = 1151, 139393, 9124993, 26266753, 174321793, 202246273, · · · .

1Actually this one is highly improbable: if i−1 is odd, then i−1 = k must be a prime to make p = 2k−1 a

prime, so k

∣∣∣∣ 2k−1 − (−1)k−1

3
=

2k−1 − 1

3
, and 2k−1 − 1

3k
=

(2
k−1
2 + 1)(2

k−1
2 − 1)

3k
must be prime, impossible

unless k = 7, 11 (but 211 − 1 is not prime). So i − 1 must be even, then we must have i − 1 = 2k to

make p = 22
k

+ 1 prime, and PQ =
22

k−1 + 1

3
, which in turn implies that 2k − 1 is prime (2k − 1 cannot

be a perfect power, and if m,n are coprime odd numbers, then 2m + 1

3
,
2n + 1

3

∣∣∣∣ 2mn + 1

3
, which implies

2mn + 1

3
=

2m + 1

3
× 2n + 1

3
× (something else)).
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