[go: up one dir, main page]

login
A350697
Smallest number m > 1 such that n * m = A350538(n) contains only even digits.
1
2, 2, 2, 2, 4, 4, 4, 3, 32, 2, 2, 2, 2, 2, 4, 3, 4, 16, 12, 2, 2, 2, 2, 2, 8, 8, 18, 3, 14, 2, 2, 2, 2, 2, 8, 8, 6, 6, 12, 2, 2, 2, 2, 2, 64, 10, 6, 5, 14, 4, 4, 4, 8, 9, 4, 4, 4, 7, 14, 4, 4, 4, 14, 7, 4, 4, 4, 3, 12, 4, 4, 4, 28, 3, 8, 3, 6, 6, 34, 3, 6, 3, 8, 5, 8
OFFSET
1,1
COMMENTS
The smallest odd term is a(48) = 5 because 48*5 = 240.
Record values of a(n) are 2, 4, 32, 64, ...
FORMULA
a(n) = A350538(n) / n.
EXAMPLE
The smallest proper multiple of 9 with only even digits is A350538(9) = 288, as 288 = 9 * 32, a(9) = 32.
MATHEMATICA
a[n_] := Module[{k = 2*n}, While[! AllTrue[IntegerDigits[k], EvenQ], k += n]; k/n]; Array[a, 100] (* Amiram Eldar, Jan 12 2022 *)
PROG
(PARI) a(n) = my(k=2); while(#select(x->((x%2) == 1), digits(k*n)), k++); k; \\ Michel Marcus, Jan 12 2022
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Jan 12 2022
EXTENSIONS
More terms from Michel Marcus, Jan 12 2022
STATUS
approved