[go: up one dir, main page]

login
A350371
Numbers with exactly 4 semiprime divisors.
5
60, 84, 90, 120, 126, 132, 140, 150, 156, 168, 198, 204, 220, 228, 234, 240, 260, 264, 270, 276, 280, 294, 306, 308, 312, 315, 336, 340, 342, 348, 350, 364, 372, 378, 380, 408, 414, 440, 444, 456, 460, 476, 480, 490, 492, 495, 516, 520, 522, 525, 528, 532, 550, 552, 558
OFFSET
1,1
MATHEMATICA
q[n_] := DivisorSum[n, 1 &, PrimeOmega[#] == 2 &] == 4; Select[Range[600], q] (* Amiram Eldar, Dec 28 2021 *)
spd4Q[n_]:=Count[Divisors[n], _?(PrimeOmega[#]==2&)]==4; Select[Range[600], spd4Q] (* Harvey P. Dale, Apr 30 2023 *)
PROG
(PARI) isok(k) = sumdiv(k, d, bigomega(d)==2) == 4; \\ Michel Marcus, Dec 28 2021
CROSSREFS
Numbers with exactly k semiprime divisors: A346041 (k=1), A345381 (k=2), A345382 (k=3), this sequence (k=4), A350372 (k=5), A350373 (k=6), A350374 (k=7), A350375 (k=8).
Sequence in context: A123712 A178212 A182855 * A009129 A174292 A085987
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Dec 27 2021
STATUS
approved