[go: up one dir, main page]

login
A350084
a(n) = ord(2,A006935(n)/2), where ord(k,m) is the multiplicative order of k modulo m.
2
1, 261, 165, 275, 13425, 1485, 1305, 32085, 825, 3465, 2093, 3135, 495, 495, 261, 847, 9405, 552189, 198561, 261, 579261, 2475, 6237, 166725, 111111, 3393, 3565, 25245, 18585, 4437, 891891, 309455, 37125, 4833, 2301585, 14355, 11781, 3315, 915, 84975, 35259
OFFSET
1,2
COMMENTS
List of ord(2,k) where k ranges over the odd numbers such that 2^(2*k-1) == 1 (mod k).
LINKS
FORMULA
a(n) = ord(2,A347906(n)) = (A006935(n) - 1) / A350083(n).
EXAMPLE
A006935(2) = 161038, so a(2) = ord(2,161038/2) = 261.
A006935(3) = 215326, so a(3) = ord(2,215326/2) = 165.
PROG
(PARI) list(lim) = my(v=[], d); forstep(k=1, lim, 2, if((2*k-1)%(d=znorder(Mod(2, k)))==0, v=concat(v, d))); v \\ gives a(n) for A347906(n) <= lim
CROSSREFS
KEYWORD
nonn
AUTHOR
Jianing Song, Dec 12 2021
STATUS
approved