[go: up one dir, main page]

login
A350044
Loop starting at 187 in the Collatz-like map {x -> 3x+5 if x is odd, x/2 otherwise}.
0
187, 566, 283, 854, 427, 1286, 643, 1934, 967, 2906, 1453, 4364, 2182, 1091, 3278, 1639, 4922, 2461, 7388, 3694, 1847, 5546, 2773, 8324, 4162, 2081, 6248, 3124, 1562, 781, 2348, 1174, 587, 1766, 883, 2654, 1327, 3986, 1993, 5984, 2992, 1496, 748, 374, 187, 566, 283, 854
OFFSET
1,1
COMMENTS
Repeats every forty-four terms starting at 187. Although other loops exist for the "3x+5" map, including 5 -> 20 -> 10 -> 5 and 19 -> 62 -> 31 -> 98 -> 49 -> 152 -> 76 -> 38 -> 19, this loop is much longer and does not appear in the trajectories of as many numbers.
If the Collatz conjecture is false, it will most likely fail because of the existence of a long loop.
a(n) never ends with 0 or 5. a(n+4) - a(n) ends with 0 or 5. - Paul Curtz, Dec 29 2021
LINKS
J. C. Lagarias, The set of rational cycles for the 3x+1 problem, Acta Arithmetica, LVI (1990), pp. 33-53.
FORMULA
a(n) = A181762(a(n-1)) for n > 1, with a(1) = 187.
EXAMPLE
A181762(187) = 3*(187) + 5 = 566; then A181762(566) = 566/2 = 283.
MATHEMATICA
a[1] = 187; a[n_] := a[n] = If[OddQ[a[n - 1]], 3*a[n - 1] + 5, a[n - 1]/2]; Array[a, 50] (* Amiram Eldar, Dec 25 2021 *)
PROG
(C++)#include <iostream>
int main() {
unsigned long number = 187;
int tries = 0;
while(number > 1 && tries++ < 50) {
std::cout << number << ", ";
if (number % 2 == 0)
number /= 2;
else
number = number * 3 + 5;
}
}
(Python)
N, alst, f = 48, [187], lambda x: x//2 if x%2 == 0 else 3*x + 5
[alst.append(f(alst[-1])) for _ in range(N)]
print(alst) # Michael S. Branicky, Dec 28 2021
CROSSREFS
Sequence in context: A362630 A308810 A063346 * A241670 A134163 A030536
KEYWORD
nonn,easy
AUTHOR
STATUS
approved