OFFSET
1,1
COMMENTS
For every prime p, there are infinitely many numbers m such that 2^m - m (A000325) is divisible by p, here are numbers m corresponding to p = 5.
Equivalently, numbers that are congruent to {3, 14, 16, 17, 23, 34, 36, 37, 43, 54, 56, 57} mod 60, <==> numbers that are congruent to {+-3, +-14, +-16, +-17, +-23, +-34} mod 60.
REFERENCES
Michael Doob, The Canadian Mathematical Olympiad & L'Olympiade Mathématique du Canada 1969-1993, Canadian Mathematical Society & Société Mathématique du Canada, Problem 4, 1983, page 158, 1993.
LINKS
The IMO Compendium, Problem 4, 15th Canadian Mathematical Olympiad 1983.
MAPLE
filter:= n -> 2^n-n mod 5 = 0 : select(filter, [$1..400]);
MATHEMATICA
Select[Range[300], PowerMod[2, #, 5] == Mod[#, 5] &] (* Amiram Eldar, Dec 10 2021 *)
PROG
(PARI) isok(m) = Mod(2, 5)^m == Mod(m, 5); \\ Michel Marcus, Dec 10 2021
(Python)
def ok(n): return pow(2, n, 5) == n%5
print([k for k in range(357) if ok(k)]) # Michael S. Branicky, Dec 10 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Bernard Schott, Dec 10 2021
STATUS
approved