[go: up one dir, main page]

login
A349240
a(n) = n - (reversal of digits in the Zeckendorf representation of n).
2
0, 0, 1, 2, 0, 4, 0, 3, 7, 0, 4, 7, 0, 12, 0, 6, 10, -2, 14, 2, 8, 20, 0, 9, 15, -5, 20, 0, 9, 25, 5, 14, 20, 0, 33, 0, 14, 23, -10, 30, -3, 11, 36, 3, 17, 26, -7, 43, 10, 24, 33, 0, 40, 7, 21, 54, 0, 22, 36, -18, 46, -8, 14, 54, 0, 22, 36, -18, 62, 8, 30, 44
OFFSET
0,4
LINKS
FORMULA
a(n) = n - A349238(n).
a(n) = 2*n - A349239(n).
PROG
(PARI) See links.
(Python) # Using functions NumToFib and RevFibToNum from A349238.
n, a = 0, 0
print(a - a, end = ", ")
while n < 71:
n += 1
print(n - RevFibToNum(NumToFib(n)), end = ", ") # A.H.M. Smeets, Nov 14 2021
CROSSREFS
Cf. A189920 (Zeckendorf digits), A349238 (reverse), A349239 (reverse and add).
Cf. A094202 (indices of 0's).
Other bases: A055945 (binary), A056965 (decimal).
Sequence in context: A119607 A279968 A164297 * A366879 A109578 A302826
KEYWORD
base,easy,sign
AUTHOR
Kevin Ryde, Nov 11 2021
STATUS
approved