[go: up one dir, main page]

login
A348686
Array read by ascending antidiagonals: T(n, k) = P(n, k) where P(n, x) are the scaled Mandelbrot-Larsen polynomials defined in A347928.
1
1, 3, 2, 6, 8, 3, 45, 32, 15, 4, 126, 256, 90, 24, 5, 750, 1536, 885, 192, 35, 6, 2796, 12288, 8010, 2304, 350, 48, 7, 19389, 90112, 85590, 27648, 5005, 576, 63, 8, 75894, 753664, 913140, 374784, 74550, 9600, 882, 80, 9
OFFSET
1,2
LINKS
Neil J. Calkin, Eunice Y. S. Chan, and Robert M. Corless, Some Facts and Conjectures about Mandelbrot Polynomials, Maple Trans., Vol. 1, No. 1, Article 14037 (July 2021).
Michael Larsen, Multiplicative series, modular forms, and Mandelbrot polynomials, in: Mathematics of Computation 90.327 (Sept. 2020), pp. 345-377. Preprint: arXiv:1908.09974 [math.NT], 2019.
EXAMPLE
Array starts:
[1] 1, 2, 3, 4, 5, 6, 7, ...
[2] 3, 8, 15, 24, 35, 48, 63, ...
[3] 6, 32, 90, 192, 350, 576, 882, ...
[4] 45, 256, 885, 2304, 5005, 9600, 16821, ...
[5] 126, 1536, 8010, 27648, 74550, 170496, 346626, ...
[6] 750, 12288, 85590, 374784, 1229550, 3317760, 7778358, ...
[7] 2796, 90112, 913140, 5210112, 21017500, 67239936, 182244132, ...
[8] 19389, 753664, 10384845, 75890688, 374119165, 1415184384, 4428038349, ...
Seen as a triangle:
[1] 1;
[2] 3, 2;
[3] 6, 8, 3;
[4] 45, 32, 15, 4;
[5] 126, 256, 90, 24, 5;
[6] 750, 1536, 885, 192, 35, 6;
[7] 2796, 12288, 8010, 2304, 350, 48, 7;
[8] 19389, 90112, 85590, 27648, 5005, 576, 63, 8;
[9] 75894, 753664, 913140, 374784, 74550, 9600, 882, 80, 9;
MAPLE
# Polynomials M are defined in A347928.
P := (n, x) -> 2^(2*n-1)*M(n, x):
row := (n, len) -> seq(P(n, k), k = 1..len):
for n from 1 to 8 do row(n, 8) od;
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Oct 29 2021
STATUS
approved