[go: up one dir, main page]

login
A348679
Triangle read by rows, T(n, k) = numerator([x^k] M(n, x)) where M(n,x) are the Mandelbrot-Larsen polynomials defined in A347928.
2
0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 3, 3, 5, 0, 0, 1, 5, 5, 7, 0, 0, 3, 13, 21, 35, 21, 0, 0, 0, 5, 25, 45, 63, 33, 0, 1, 7, 21, 245, 7, 385, 231, 429, 0, 0, 1, 9, 45, 555, 129, 819, 429, 715, 0, 0, 3, 45, 55, 1155, 2695, 2387, 3465, 6435, 2431
OFFSET
0,13
LINKS
Neil J. Calkin, Eunice Y. S. Chan, and Robert M. Corless, Some Facts and Conjectures about Mandelbrot Polynomials, Maple Trans., Vol. 1, No. 1, Article 14037 (July 2021).
Michael Larsen, Multiplicative series, modular forms, and Mandelbrot polynomials, in: Mathematics of Computation 90.327 (Sept. 2020), pp. 345-377. Preprint: arXiv:1908.09974 [math.NT], 2019.
EXAMPLE
Triangle read by rows:
[0] 0
[1] 0, 1
[2] 0, 1, 1
[3] 0, 0, 1, 1
[4] 0, 1, 3, 3, 5
[5] 0, 0, 1, 5, 5, 7
[6] 0, 0, 3, 13, 21, 35, 21
[7] 0, 0, 0, 5, 25, 45, 63, 33
[8] 0, 1, 7, 21, 245, 7, 385, 231, 429
[9] 0, 0, 1, 9, 45, 555, 129, 819, 429, 715
MAPLE
# Polynomials M are defined in A347928.
T := (n, k) -> numer(coeff(M(n, x), x, k)):
for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
CROSSREFS
T(n, n) = A098597(n).
Cf. A348678 (denominators), A347928.
Sequence in context: A300369 A304296 A076183 * A011445 A197137 A133456
KEYWORD
nonn,tabl,frac
AUTHOR
Peter Luschny, Oct 29 2021
STATUS
approved