[go: up one dir, main page]

login
A348539
Triangle T(n, m) = binomial(n+2, m)*binomial(n+2, n-m), read by rows.
0
1, 3, 3, 6, 16, 6, 10, 50, 50, 10, 15, 120, 225, 120, 15, 21, 245, 735, 735, 245, 21, 28, 448, 1960, 3136, 1960, 448, 28, 36, 756, 4536, 10584, 10584, 4536, 756, 36, 45, 1200, 9450, 30240, 44100, 30240, 9450, 1200, 45, 55, 1815, 18150, 76230, 152460, 152460, 76230, 18150, 1815, 55
OFFSET
0,2
FORMULA
G.f.: (x^2*y^2 - 2*x*y + x^2 - 2*x + 1)/(2*x^4*y^2*sqrt(x^2*y^2 + (-2*x^2-2*x)*y + x^2 - 2*x + 1)) + (x*y + x - 1)/(2*x^4*y^2).
G.f.: diff(N(x,y),x)*N(x,y)/(x*y^2), where N(x,y) is the g.f. of the Narayana numbers A001263.
EXAMPLE
Triangle starts:
[0] 1;
[1] 3, 3;
[2] 6, 16, 6;
[3] 10, 50, 50, 10;
[4] 15, 120, 225, 120, 15;
[5] 21, 245, 735, 735, 245, 21;
[6] 28, 448, 1960, 3136, 1960, 448, 28.
.
Taylor series:
1 + 3*x*(y + 1) + 2*x^2*(3*y^2 + 8*y + 3) + 10*x^3*(y^3 + 5*y^2 + 5*y + 1) + 15*x^4 (y^4 + 8*y^3 + 15*y^2 + 8*y + 1) + O(x^5)
MAPLE
T := (n, k) -> binomial(n+2, k) * binomial(n+2, n-k):
for n from 0 to 9 do seq(T(n, k), k = 0..n) od; # Peter Luschny, Oct 22 2021
MATHEMATICA
T[n_, m_] := Binomial[n + 2, m] * Binomial[n + 2, n - m]; Table[T[n, m], {n, 0, 9}, {m, 0, n}] // Flatten (* Amiram Eldar, Oct 22 2021 *)
PROG
(Maxima) T(n, m):=binomial(n+2, m)*binomial(n+2, n-m);
CROSSREFS
Cf. A001263, A000217, A002694 (with offset 0 are row sums).
Sequence in context: A006807 A298180 A119460 * A095356 A123104 A038076
KEYWORD
nonn,tabl
AUTHOR
Vladimir Kruchinin, Oct 21 2021
STATUS
approved