OFFSET
1,2
COMMENTS
Tetraphile numbers are described in A348517.
The idea for this sequence comes from the French website Diophante (see link).
It is possible to generalize for "k-phile" or "k-phobe" numbers (see Crossrefs).
The set of k-phobe numbers is always finite, the smallest one is always 1; here, there exist 23 tetraphobe numbers and the largest one is 48.
LINKS
Diophante, A496 - Pentaphiles et pentaphobes (in French).
EXAMPLE
There are no 4 positive integers b_1 < b_2 < b_3 < b_4 such that b_1 divides b_2, b_2 divides b_3, b_3 divides b_4, and 17 = b_1 + b_2 + b_3 + b_4, hence 17 is a term.
MATHEMATICA
Select[Range@48, Select[Select[IntegerPartitions[#, {4}], Length@Union@#==4&], And@@(IntegerQ/@Divide@@@Partition[#, 2, 1])&]=={}&] (* Giorgos Kalogeropoulos, Oct 24 2021 *)
PROG
(PARI) isok(k) = forpart(p=k, if (#Set(p) == 4, if (!(p[2] % p[1]) && !(p[3] % p[2]) && !(p[4] % p[3]), return(0))), , [4, 4]); return(1); \\ Michel Marcus, Nov 14 2021
CROSSREFS
KEYWORD
nonn,fini,full
AUTHOR
Bernard Schott, Oct 23 2021
STATUS
approved