[go: up one dir, main page]

login
A348476
Number of compositions of n into exactly n nonnegative parts such that all positive parts are odd.
3
1, 1, 1, 4, 13, 36, 106, 323, 981, 2992, 9196, 28392, 87946, 273287, 851579, 2659764, 8324357, 26100560, 81969496, 257800532, 811862268, 2559731360, 8079294664, 25525787344, 80719066698, 255466082911, 809138591431, 2564605664428, 8134003910311, 25813957574292
OFFSET
0,4
LINKS
FORMULA
a(n) ~ c * d^n / sqrt(Pi*n), where d = 3.22870495109450172934784925586... is largest positive root of the equation 4*d^4 - 12*d^3 + 4*d^2 - 24*d + 5 = 0 and c = 0.4302331663731241127284415754... is positive root of the equation 5824*c^8 - 32*c^4 - 4*c^2 - 5 = 0. - Vaclav Kotesovec, Nov 01 2021
EXAMPLE
a(0) = 1: [].
a(1) = 1: [1].
a(2) = 1: [1,1].
a(3) = 4: [3,0,0], [0,3,0], [0,0,3], [1,1,1].
a(4) = 13: [3,1,0,0], [3,0,1,0], [3,0,0,1], [1,3,0,0], [0,3,1,0], [0,3,0,1],[1,0,3,0], [0,1,3,0], [0,0,3,1], [1,0,0,3], [0,1,0,3], [0,0,1,3], [1,1,1,1].
MAPLE
b:= proc(n, t) option remember; `if`(t=0, 1-signum(n),
add(`if`(j=0 or j::odd, b(n-j, t-1), 0), j=0..n))
end:
a:= n-> b(n$2):
seq(a(n), n=0..30);
MATHEMATICA
b[n_, t_] := b[n, t] = If[t == 0, 1 - Sign[n],
Sum[If[j == 0 || OddQ[j], b[n - j, t - 1], 0], {j, 0, n}]];
a[n_] := b[n, n];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 16 2022, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 19 2021
STATUS
approved