[go: up one dir, main page]

login
A347981
Irregular triangle T(n, k) read by rows in which row n lists the number of parts in the symmetric representation of sigma for n = 2^m * q, 2^(m-1) * q, ... , q, with m >= 0, q odd, 1 <= k <= m + 1.
1
1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 3, 2, 2, 2, 1, 1, 2, 2, 2, 2, 3, 1, 1, 1, 1, 1, 2, 1, 3, 2, 1, 2, 2, 4, 2, 2, 2, 1, 1, 1, 2, 3, 2, 2, 4, 1, 2, 2, 2, 1, 3, 2, 1, 1, 1, 1, 1, 1, 4, 2, 2, 3, 1, 1, 3, 2, 2, 2, 4, 1, 1, 2, 2, 2, 1, 4, 2, 2, 2, 2, 3, 2, 2, 2, 1, 1, 1, 1, 2, 3, 3, 3
OFFSET
1,4
COMMENTS
The length of row n = 2^m * q, m>=0, q odd, in the triangle is m+1, i.e., the exponent of the even part of n plus 1. The rightmost number in row n gives the number of regions in the symmetric representation of sigma, for short "#rsrs", of the odd part q of n, its index in this sequence is A005187(n).
The numbers in each row of the triangle are nondecreasing.
The lengths of at least the first 21 rows are given by A001511. - Omar E. Pol, Sep 22 2021
It appears that row lengths give A001511, the columns are A237271, and row 2^i, i >= 0, lists 1 + i ones. Omar E. Pol, Oct 01 2021
FORMULA
T(n, k) = A237271(n/2^(k-1)) for n=2^m*q, m>=0, q odd, 1<=k<=m+1, and
T(n, m+1) = a(A005187(n)) = a(A011371(n) + n), n >= 1.
EXAMPLE
Row 15, a(26) = (3), consists of a single number since 15 is odd.
Row 48, a(90..94) = (1, 1, 1, 1, 2), is the sequence of #rsrs for the numbers 48, 24, 12, 6, 3.
Row 228, a(450..452) = (1, 2, 4), is the sequence of #rsrs for the numbers 228, 114, 57.
First 21 rows of the triangle; columns indicate division of n by powers of 2:
n 1 2 4 8 16
-------------------------------------
1: 1;
2: 1, 1;
3: 2;
4: 1, 1, 1;
5: 2;
6: 1, 2;
7: 2;
8: 1, 1, 1, 1;
9: 3;
10: 2, 2;
11: 2;
12: 1, 1, 2;
13: 2;
14: 2, 2;
15: 3;
16: 1, 1, 1, 1, 1;
17: 2;
18: 1, 3;
19: 2;
20: 1, 2, 2;
21: 4;
MATHEMATICA
(* function a237270[ ] is defined in A237270 *)
a237271[n_] := Length[a237270[n]]
a347981[n_] := Last[Transpose[NestWhileList[{First[#]/2, a237271[First[#]/2]}&, {n, a237271[n]}, IntegerExponent[First[#], 2]>0&]]]
Flatten[Map[a347981, Range[50]]]
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Hartmut F. W. Hoft, Sep 22 2021
STATUS
approved