[go: up one dir, main page]

login
A347868
Number of partitions of n such that 4*(greatest part) >= (number of parts).
2
1, 2, 3, 5, 6, 10, 14, 21, 29, 40, 53, 73, 96, 129, 168, 221, 284, 369, 471, 603, 763, 966, 1211, 1521, 1892, 2355, 2912, 3600, 4423, 5434, 6639, 8107, 9855, 11968, 14476, 17495, 21067, 25342, 30393, 36406, 43489, 51891, 61761, 73421, 87087, 103172, 121977, 144045, 169780, 199883
OFFSET
1,2
COMMENTS
Also, the number of partitions of n such that (greatest part) <= 4*(number of parts).
FORMULA
G.f.: Sum_{k>=1} x^k * Product_{j=1..k} (1-x^(4*k+j-1))/(1-x^j).
PROG
(PARI) my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, x^k*prod(j=1, k, (1-x^(4*k+j-1))/(1-x^j))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 25 2022
STATUS
approved