[go: up one dir, main page]

login
A347060
Total number of 1's in the binary expansion of parts in all partitions of n into distinct parts.
3
0, 1, 1, 4, 4, 7, 11, 15, 20, 28, 39, 48, 64, 80, 104, 134, 167, 203, 257, 311, 381, 470, 566, 680, 820, 981, 1168, 1394, 1650, 1946, 2300, 2700, 3161, 3705, 4315, 5026, 5845, 6769, 7827, 9049, 10424, 11992, 13784, 15801, 18088, 20702, 23620, 26922, 30665
OFFSET
0,4
LINKS
EXAMPLE
a(5) = 7 counts the 1's in [101], [100, 1], [11, 10].
MAPLE
h:= proc(n) option remember; add(i, i=Bits[Split](n)) end:
b:= proc(n, i) option remember; `if`(n=0, [1, 0],
`if`(n>i*(i+1)/2, 0, b(n, i-1)+(p-> p+
[0, p[1]*h(i)])(b(n-i, min(n-i, i-1)))))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=0..60);
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Alois P. Heinz, Aug 14 2021
STATUS
approved