OFFSET
1,2
COMMENTS
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
EXAMPLE
The partition (2,2,2,1,1) has Heinz number 108 and odd bisection (2,2,1) with Heinz number 18, so a(108) = 18.
The partitions (3,2,2,1,1), (3,2,2,2,1), (3,3,2,1,1) have Heinz numbers 180, 270, 300 and all have odd bisection (3,2,1) with Heinz number 30, so a(180) = a(270) = a(300) = 30.
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Table[Times@@Prime/@First/@Partition[Append[Reverse[primeMS[n]], 0], 2], {n, 100}]
CROSSREFS
Positions of last appearances are A000290 without the first term 0.
The even version is A329888.
Positions of first appearances are A342768.
The non-reverse version is A346703.
The even non-reverse version is A346704.
A001221 counts distinct prime factors.
A001222 counts all prime factors.
A209281 (shifted) adds up the odd bisection of standard compositions.
A344606 counts alternating permutations of prime indices.
A344617 gives the sign of the alternating sum of prime indices.
A346700 gives the sum of the even bisection of reversed prime indices.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 03 2021
STATUS
approved