[go: up one dir, main page]

login
A346659
Primes that are not of the form p*q +- 2 where p and q are primes (not necessarily distinct).
1
3, 5, 29, 43, 61, 73, 101, 103, 107, 137, 149, 151, 173, 191, 193, 197, 227, 229, 241, 271, 277, 281, 283, 313, 347, 349, 421, 431, 433, 457, 461, 463, 523, 569, 601, 607, 617, 619, 641, 643, 659, 661, 727, 821, 823, 827, 857, 859, 883, 929, 1019, 1021, 1031
OFFSET
1,1
COMMENTS
Conjecture: this sequence is infinite.
LINKS
EXAMPLE
2 is not a term because 2 = 2*2 - 2.
3 is a term because neither 1 (3-2) nor 5 (3+2) is a product of two primes.
MAPLE
q:= n-> andmap(x-> numtheory[bigomega](x)<>2, [n-2, n+2]):
select(q, [ithprime(i)$i=1..200])[]; # Alois P. Heinz, Jul 30 2021
MATHEMATICA
Select[Range[3, 1000], PrimeQ[#] && PrimeOmega[# - 2] != 2 && PrimeOmega[# + 2] != 2 &] (* Amiram Eldar, Jul 29 2021 *)
PROG
(Python)
from sympy import factorint, primerange
def semiprime(n): return sum(e for e in factorint(n).values()) == 2
def ok(p): return not semiprime(p-2) and not semiprime(p+2)
def aupto(limit): return list(filter(ok, primerange(1, limit+1)))
print(aupto(1031)) # Michael S. Branicky, Jul 29 2021
CROSSREFS
Cf. A207526 (complementary sequence).
Sequence in context: A272345 A356147 A364762 * A067200 A106089 A303971
KEYWORD
nonn
AUTHOR
Marcin Barylski, Jul 27 2021
EXTENSIONS
More terms from Michael S. Branicky, Jul 29 2021
STATUS
approved