[go: up one dir, main page]

login
A346226
Number of n-step 5-dimensional nonnegative lattice walks starting at the origin and using steps that increment all components or decrement one component by 1.
2
1, 1, 6, 31, 146, 686, 3476, 18711, 101106, 540986, 2914396, 15949626, 88494316, 493812436, 2757957496, 15432771991, 86805867666, 490992405026, 2788039913036, 15864244837646, 90398688107076, 516136925025356, 2954961007771656, 16960102805812986
OFFSET
0,3
LINKS
FORMULA
a(n) == 1 (mod 5).
MAPLE
b:= proc(n, l) option remember; `if`(n=0, 1, (k-> `if`(n>min(l),
add(`if`(l[i]=0, 0, b(n-1, sort(subsop(i=l[i]-1, l)))),
i=1..k)+b(n-1, map(x-> x+1, l)), (k+1)^n))(nops(l)))
end:
a:= n-> b(n, [0$5]):
seq(a(n), n=0..27);
CROSSREFS
Column k=5 of A335570.
Sequence in context: A099621 A291002 A268401 * A240879 A056015 A128740
KEYWORD
nonn,walk
AUTHOR
Alois P. Heinz, Jul 11 2021
STATUS
approved