[go: up one dir, main page]

login
A346045
Decimal expansion of Sum_{k>=0} 1/(k! * A003266(k)).
0
2, 5, 9, 0, 5, 6, 1, 4, 0, 6, 5, 6, 6, 1, 8, 0, 0, 8, 3, 7, 8, 7, 7, 2, 4, 2, 3, 0, 6, 1, 7, 2, 0, 2, 1, 3, 4, 6, 9, 1, 0, 1, 6, 8, 6, 3, 8, 7, 4, 0, 4, 5, 2, 9, 5, 6, 8, 2, 2, 5, 5, 6, 9, 8, 7, 0, 4, 0, 5, 2, 0, 7, 3, 0, 6, 9, 2, 4, 4, 9, 9, 0, 6, 9, 0, 6, 7, 8, 6, 5, 2, 2, 6, 5, 3, 0, 6, 1, 6, 5
OFFSET
1,1
COMMENTS
This constant is irrational (Mingarelli, 2013).
LINKS
Angelo B. Mingarelli, Abstract factorials, Notes on Number Theory and Discrete Mathematics, Vol. 19, No. 4 (2013), pp. 43-76 (see p. 61); arXiv preprint, arXiv:0705.4299 [math.NT], 2007-2012.
EXAMPLE
2.59056140656618008378772423061720213469101686387404...
MATHEMATICA
RealDigits[Sum[1/(n! * Fibonorial[n]), {n, 0, 50}], 10, 100][[1]]
PROG
(PARI) f(n) = prod(i=1, n, fibonacci(i)); \\ A003266
suminf(k=0, 1/(k!*f(k))) \\ Michel Marcus, Jul 05 2021
CROSSREFS
Sequence in context: A282455 A323457 A011039 * A021390 A201934 A019802
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, Jul 02 2021
STATUS
approved