OFFSET
1,8
FORMULA
G.f.: x^2 + x^3 * Product_{n>=1} (1 + x^n)^a(n).
a(1) = 0, a(2) = 1, a(3) = 1; a(n) = (1/(n - 3)) * Sum_{k=1..n-3} ( Sum_{d|k} (-1)^(k/d+1) * d * a(d) ) * a(n-k).
MAPLE
a:= proc(n) option remember; `if`(n<4, signum(n-1), add(a(n-k)*add(
(-1)^(k/d+1)*d*a(d), d=numtheory[divisors](k)), k=1..n-3)/(n-3))
end:
seq(a(n), n=1..50); # Alois P. Heinz, Jul 01 2021
MATHEMATICA
nmax = 50; A[_] = 0; Do[A[x_] = x^2 + x^3 Exp[Sum[(-1)^(k + 1) A[x^k]/k, {k, 1, nmax}]] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
a[1] = 0; a[2] = 1; a[3] = 1; a[n_] := a[n] = (1/(n - 3)) Sum[Sum[(-1)^(k/d + 1) d a[d], {d, Divisors[k]}] a[n - k], {k, 1, n - 3}]; Table[a[n], {n, 1, 50}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 01 2021
STATUS
approved