OFFSET
0,12
COMMENTS
The matrices (A345197) count the integer compositions of n of length k with alternating sum i, where 1 <= k <= n, and i ranges from -n + 2 to n in steps of 2. Here, the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
Problem: What are the column sums? They appear to match A239201, but it is not clear why.
EXAMPLE
Triangle begins:
1
1 1
0 1 1
0 1 1 1
0 2 2 1 1
0 0 4 3 1 1
0 0 3 6 4 1 1
0 0 6 9 8 5 1 1
0 0 0 18 18 10 6 1 1
0 0 0 10 36 30 12 7 1 1
0 0 0 20 40 60 45 14 8 1 1
0 0 0 0 80 100 90 63 16 9 1 1
0 0 0 0 35 200 200 126 84 18 10 1 1
0 0 0 0 70 175 400 350 168 108 20 11 1 1
0 0 0 0 0 350 525 700 560 216 135 22 12 1 1
MATHEMATICA
ats[y_]:=Sum[(-1)^(i-1)*y[[i]], {i, Length[y]}];
Table[Table[Length[Select[Join@@Permutations/@IntegerPartitions[n, {n-k}], k==(n+ats[#])/2-1&]], {k, 0, n-1}], {n, 0, 15}]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Jul 26 2021
STATUS
approved