[go: up one dir, main page]

login
A345820
Numbers that are the sum of six fourth powers in exactly eight ways.
8
58035, 59780, 87746, 96195, 96450, 102371, 106451, 106515, 108035, 108275, 108290, 108771, 112370, 112931, 115251, 122835, 122850, 124691, 125971, 133395, 133571, 133586, 134675, 136931, 138275, 138595, 143650, 144755, 145826, 147491, 148820, 149571, 150115
OFFSET
1,1
COMMENTS
Differs from A345565 at term 4 because 88595 = 1^4 + 4^4 + 5^4 + 12^4 + 13^4 + 14^4 = 1^4 + 6^4 + 6^4 + 11^4 + 12^4 + 15^4 = 1^4 + 7^4 + 8^4 + 9^4 + 10^4 + 16^4 = 2^4 + 8^4 + 9^4 + 9^4 + 12^4 + 15^4 = 2^4 + 10^4 + 11^4 + 11^4 + 12^4 + 13^4 = 4^4 + 6^4 + 6^4 + 9^4 + 13^4 + 15^4 = 5^4 + 6^4 + 7^4 + 8^4 + 11^4 + 16^4 = 7^4 + 7^4 + 10^4 + 11^4 + 12^4 + 14^4.
LINKS
EXAMPLE
59780 is a term because 59780 = 1^4 + 1^4 + 1^4 + 5^4 + 12^4 + 14^4 = 1^4 + 1^4 + 6^4 + 6^4 + 9^4 + 15^4 = 1^4 + 2^4 + 9^4 + 10^4 + 11^4 + 13^4 = 1^4 + 4^4 + 7^4 + 7^4 + 8^4 + 15^4 = 1^4 + 7^4 + 7^4 + 9^4 + 10^4 + 14^4 = 2^4 + 5^4 + 6^4 + 11^4 + 11^4 + 13^4 = 3^4 + 7^4 + 8^4 + 10^4 + 11^4 + 13^4 = 5^4 + 6^4 + 7^4 + 7^4 + 11^4 + 14^4.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 6):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 8])
for x in range(len(rets)):
print(rets[x])
KEYWORD
nonn
AUTHOR
STATUS
approved