[go: up one dir, main page]

login
A345782
Numbers that are the sum of seven cubes in exactly ten ways.
6
1704, 1711, 1800, 1837, 1863, 1926, 1938, 1963, 2008, 2019, 2045, 2053, 2059, 2078, 2113, 2143, 2161, 2171, 2176, 2217, 2223, 2250, 2260, 2266, 2276, 2286, 2295, 2304, 2313, 2315, 2331, 2350, 2354, 2357, 2374, 2404, 2412, 2413, 2442, 2444, 2446, 2447, 2511
OFFSET
1,1
COMMENTS
Differs from A345506 at term 3 because 1774 = 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 12^3 = 1^3 + 1^3 + 1^3 + 2^3 + 6^3 + 6^3 + 11^3 = 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 9^3 + 10^3 = 1^3 + 1^3 + 4^3 + 5^3 + 5^3 + 9^3 + 9^3 = 1^3 + 2^3 + 3^3 + 4^3 + 6^3 + 9^3 + 9^3 = 1^3 + 2^3 + 4^3 + 4^3 + 5^3 + 8^3 + 10^3 = 1^3 + 4^3 + 4^3 + 4^3 + 5^3 + 5^3 + 11^3 = 2^3 + 2^3 + 2^3 + 4^3 + 7^3 + 7^3 + 10^3 = 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 6^3 + 11^3 = 3^3 + 3^3 + 6^3 + 6^3 + 6^3 + 7^3 + 9^3 = 4^3 + 4^3 + 4^3 + 5^3 + 6^3 + 8^3 + 9^3.
Likely finite.
LINKS
EXAMPLE
1711 is a term because 1711 = 1^3 + 1^3 + 1^3 + 4^3 + 4^3 + 8^3 + 8^3 = 1^3 + 1^3 + 2^3 + 3^3 + 5^3 + 8^3 + 8^3 = 1^3 + 1^3 + 2^3 + 3^3 + 4^3 + 7^3 + 9^3 = 1^3 + 1^3 + 3^3 + 3^3 + 4^3 + 4^3 + 10^3 = 1^3 + 2^3 + 2^3 + 2^3 + 6^3 + 6^3 + 9^3 = 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 5^3 + 10^3 = 1^3 + 3^3 + 3^3 + 4^3 + 5^3 + 7^3 + 8^3 = 2^3 + 2^3 + 3^3 + 5^3 + 6^3 + 6^3 + 8^3 = 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 6^3 + 9^3 = 4^3 + 4^3 + 5^3 + 5^3 + 6^3 + 6^3 + 6^3.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**3 for x in range(1, 1000)]
for pos in cwr(power_terms, 7):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 10])
for x in range(len(rets)):
print(rets[x])
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved