[go: up one dir, main page]

login
A345752
E.g.f.: Product_{k>=1} (1 - (exp(x) - 1)^k / k).
1
1, -1, -2, -3, 0, 55, 572, 4865, 40912, 351675, 2978196, 23418373, 148849544, 84185855, -27459134420, -881482705719, -21652972750464, -487503384038525, -10785437160748156, -242968902040697011, -5627949704687484872, -133358411031825299385
OFFSET
0,3
COMMENTS
Stirling transform of A292359.
LINKS
N. J. A. Sloane, Transforms
Eric Weisstein's World of Mathematics, Stirling Transform
FORMULA
a(n) = Sum_{k=0..n} Stirling2(n,k) * A292359(k).
MATHEMATICA
max = 21; Range[0, max]! * CoefficientList[Series[Product[1 - (Exp[x] - 1)^k/k, {k, 1, max}], {x, 0, max}], x] (* Amiram Eldar, Jun 26 2021 *)
PROG
(PARI) my(N=40, x='x+O('x^N)); Vec(serlaplace(prod(k=1, N, 1-(exp(x)-1)^k/k)))
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jun 26 2021
STATUS
approved