[go: up one dir, main page]

login
A345073
a(n) is the least integer k such that e * (n!)^(1/n) < n + k.
2
2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
OFFSET
1,1
LINKS
David E. Radford, Factorials and powers, a minimality result, arXiv:2106.02002 [math.NT], 2021.
David E. Radford, Factorials and powers, a minimality result, revisited, arXiv:2106.02109 [math.NT], 2021.
PROG
(PARI) a(n) = my(k=1); while (exp(1)*sqrtn(n!, n) >= n+k, k++); k;
CROSSREFS
Cf. A001113 (e), A345074.
Sequence in context: A230516 A192688 A156752 * A086673 A101787 A343607
KEYWORD
nonn
AUTHOR
Michel Marcus, Jun 07 2021
STATUS
approved