[go: up one dir, main page]

login
A344350
a(n) = Sum_{k=1..n} mu(n*k-k-1)^2, where mu is the Möbius function.
1
1, 2, 3, 3, 4, 5, 6, 5, 6, 8, 10, 8, 10, 10, 13, 11, 14, 12, 16, 13, 17, 16, 18, 15, 18, 18, 23, 20, 25, 18, 27, 19, 26, 24, 30, 23, 33, 25, 30, 28, 32, 27, 39, 28, 36, 33, 39, 30, 41, 32, 45, 38, 44, 33, 51, 37, 45, 40, 49, 37, 54, 36, 51, 45, 54, 43, 61, 41, 57, 48, 59, 46, 64
OFFSET
1,2
COMMENTS
Number of squarefree numbers along the main antidiagonal of the n X n square array whose elements are the numbers from 1..n^2, listed in increasing order by rows.
EXAMPLE
[1 2 3 4 5]
[1 2 3 4] [6 7 8 9 10]
[1 2 3] [5 6 7 8] [11 12 13 14 15]
[1 2] [4 5 6] [9 10 11 12] [16 17 18 19 20]
[1] [3 4] [7 8 9] [13 14 15 16] [21 22 23 24 25]
------------------------------------------------------------------------
n 1 2 3 4 5
------------------------------------------------------------------------
a(n) 1 2 3 3 4
------------------------------------------------------------------------
numbers {1} {2,3} {3,5,7} {7,10,13} {5,13,17,21}
------------------------------------------------------------------------
MATHEMATICA
Table[Sum[MoebiusMu[n*k - k + 1]^2, {k, n}], {n, 100}]
CROSSREFS
Cf. A008683 (Möbius).
Sequence in context: A244041 A331835 A022290 * A185363 A103827 A094182
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, May 15 2021
STATUS
approved