[go: up one dir, main page]

login
A344244
Numbers that are the sum of five fourth powers in exactly three ways.
7
4225, 6610, 6850, 9170, 9235, 9490, 11299, 12929, 14209, 14690, 14755, 14770, 15314, 16579, 16594, 16659, 16834, 17203, 17235, 17315, 17859, 17874, 17939, 18785, 18850, 18979, 19154, 19700, 19715, 20674, 21250, 21330, 21364, 21410, 21954, 23139, 23795, 24754, 25810, 26578, 28610, 28930, 29330, 29699
OFFSET
1,1
COMMENTS
Differs from A344243 at term 31 because 20995 = 1^4 + 1^4 + 1^4 + 4^4 + 12^4 = 2^4 + 3^4 + 3^4 + 3^4 + 12^4 = 2^4 + 6^4 + 9^4 + 9^4 + 9^4 = 4^4 + 6^4 + 7^4 + 7^4 + 11^4
LINKS
David Consiglio, Jr., Table of n, a(n) for n = 1..20000
EXAMPLE
6850 is a member of this sequence because 6850 = = 1^4 + 2^4 + 2^4 + 4^4 + 9^4 = 2^4 + 3^4 + 4^4 + 7^4 + 8^4 = 3^4 + 3^4 + 6^4 + 6^4 + 8^4
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 50)]
for pos in cwr(power_terms, 5):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 3])
for x in range(len(rets)):
print(rets[x])
KEYWORD
nonn
AUTHOR
STATUS
approved