[go: up one dir, main page]

login
A344184
Lexicographically earliest sequence of positive integers such that for any n > 0, the binary expansion of a(n) contains the binary expansion of k for k = 1..n and the binary expansion of a(n+1) is obtained by replacing a possibly empty substring of the binary expansion of a(n) by the binary expansion of n+1.
1
1, 2, 6, 12, 44, 44, 92, 184, 1208, 1336, 5304, 5304, 10680, 10680, 21368, 42736, 567024, 673520, 5383920, 5383920, 21535472, 172283632, 172283632, 172283632, 344774384, 344774384, 344774384, 344774384, 689559280, 689559280, 1379118576, 2758237152, 71477713888
OFFSET
1,2
COMMENTS
This sequence is a variant of A056744, easier to compute.
This sequence is not weakly increasing; a(109) < a(108).
FORMULA
A144016(a(n)) >= n.
EXAMPLE
The first terms, alongside their binary expansion, are:
n a(n) bin(n) bin(a(n))
-- ----- ------ ---------------
1 1 1 1
2 2 10 10
3 6 11 110
4 12 100 1100
5 44 101 101100
6 44 110 101100
7 92 111 1011100
8 184 1000 10111000
9 1208 1001 10010111000
10 1336 1010 10100111000
11 5304 1011 1010010111000
12 5304 1100 1010010111000
13 10680 1101 10100110111000
14 10680 1110 10100110111000
15 21368 1111 101001101111000
PROG
(PARI) See Links section.
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, May 11 2021
STATUS
approved