[go: up one dir, main page]

login
A344082
a(n) = n * Sum_{d|n} tau(d)^3 / d, where tau(n) is the number of divisors of n.
0
1, 10, 11, 47, 13, 110, 15, 158, 60, 130, 19, 517, 21, 150, 143, 441, 25, 600, 27, 611, 165, 190, 31, 1738, 92, 210, 244, 705, 37, 1430, 39, 1098, 209, 250, 195, 2820, 45, 270, 231, 2054, 49, 1650, 51, 893, 780, 310, 55, 4851, 132, 920, 275, 987, 61, 2440, 247, 2370, 297, 370, 67, 6721, 69
OFFSET
1,2
LINKS
László Tóth, Multiplicative arithmetic functions of several variables: a survey, arXiv preprint arXiv:1310.7053 [math.NT], 2013.
FORMULA
G.f.: Sum_{k >= 1} tau(k)^3 * x^k/(1 - x^k)^2.
If p is prime, a(p) = 8 + p.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(2)^4 * Product_{p prime} (1 + 4/p^2 + 1/p^4) = 31.237542262502... . - Amiram Eldar, Dec 22 2023
From Peter Bala, Jan 25 2024: (Start)
a(n) = Sum_{d|n, e|n} gcd(d, e) * tau(n/d) * tau(n/e) (the sum is a multiplicative function of n - see Tóth).
Multiplicative: a(p^k) = ( p^(k+2)*(p^2 + 4*p + 1) - p^3*(k + 2)^3 + p^2*(3*k^3 + 15*k^2 + 21*k + 5) - p*(3*k^3 + 12*k^2 + 12*k + 4) + (k + 1)^3 ) / (p - 1)^4. (End)
MATHEMATICA
a[n_] := n * DivisorSum[n, DivisorSigma[0, #]^3/# &]; Array[a, 61] (* Amiram Eldar, May 09 2021 *)
PROG
(PARI) a(n) = n*sumdiv(n, d, numdiv(d)^3/d);
(PARI) my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, numdiv(k)^3*x^k/(1-x^k)^2))
CROSSREFS
KEYWORD
nonn,mult,easy
AUTHOR
Seiichi Manyama, May 09 2021
STATUS
approved