[go: up one dir, main page]

login
A343444
Smallest nonnegative integer such that altering at most one of its digits cannot result in a previous term.
5
0, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 110, 123, 132, 145, 154, 167, 176, 189, 198, 202, 213, 220, 231, 246, 257, 264, 275, 303, 312, 321, 330, 347, 356, 365, 374, 404, 415, 426, 437, 440, 451, 462, 473, 505, 514, 527, 536, 541, 550, 563, 572, 606, 617, 624, 635, 642, 653, 660, 671, 707, 716, 725, 734, 743, 752
OFFSET
1,2
COMMENTS
Allowing prepending the integer representation with zeros; this means the Hamming distance between two digit strings representing different terms is at least 2.
Numbers whose bitwise XOR of digits is equal to zero. - Jeremias M. Gomes, Jul 25 2021
LINKS
J. H. Conway and N. J. A. Sloane, Lexicographic codes: error-correcting codes from game theory, IEEE Transactions on Information Theory, 32:337-348, 1986.
Wikipedia, Hamming distance
PROG
(Python)
def ham(m, n):
s, t = str(min(m, n)), str(max(m, n))
s = '0'*(len(t)-len(s)) + s
return sum(s[i] != t[i] for i in range(len(t)))
def aupton(terms):
alst = [0]
for n in range(2, terms+1):
an = alst[-1] + 1
while any(ham(an, alst[-i]) < 2 for i in range(1, len(alst)+1)): an += 1
alst.append(an)
return alst
print(aupton(66)) # Michael S. Branicky, Apr 15 2021
CROSSREFS
KEYWORD
base,easy,nonn
AUTHOR
Bert Dobbelaere, Apr 15 2021
STATUS
approved