OFFSET
1,12
FORMULA
a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} sign(3 - c(n/j) - c(n/i) - c(n/(n-i-j))) * c(i/j) * c((n-i-j)/i) * c((n-i-j)/j), where c(n) = ceiling(n) - floor(n).
EXAMPLE
a(12) = 2; [2,3,7], [3,4,5] (Not counted [1,1,10], [1,2,9], [1,3,8], [1,4,7], [1,5,6], [2,2,8], [2,4,6], [2,5,5], [3,3,6], [4,4,4]).
MATHEMATICA
Table[Sum[Sum[Sign[3 - Ceiling[n/j] + Floor[n/j] - Ceiling[n/(n - i - j)] + Floor[n/(n - i - j)] - Ceiling[n/i] + Floor[n/i]] (Ceiling[i/j] - Floor[i/j]) (Ceiling[(n - i - j)/j] - Floor[(n - i - j)/j]) (Ceiling[(n - i - j)/i] - Floor[(n - i - j)/i]), {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 100}]
PROG
(PARI) c(n) = ceil(n)-floor(n)
a(n) = sum(j=1, floor(n/3), sum(i=j, floor((n-j)/2), sign(3-c(n/j)-c(n/i)-c(n/(n-i-j))) * c(i/j) * c((n-i-j)/i) * c((n-i-j)/j))) \\ Felix Fröhlich, Apr 21 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Apr 13 2021
STATUS
approved