[go: up one dir, main page]

login
A343249
a(n) is the least k0 <= n such that v_2(n), the 2-adic order of n, can be obtained by the formula: v_2(n) = log_2(n / L_2(k0, n)), where L_2(k0, n) is the lowest common denominator of the elements of the set S_2(k0, n) = {(1/n)*binomial(n, k), with 0 < k <= k0 such that k is not divisible by 2} or 0 if no such k0 exists.
13
1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 11, 3, 13, 7, 5, 1, 17, 9, 19, 5, 7, 11, 23, 3, 25, 13, 27, 7, 29, 5, 31, 1, 11, 17, 7, 9, 37, 19, 13, 5, 41, 7, 43, 11, 9, 23, 47, 3, 49, 25, 17, 13, 53, 27, 11, 7, 19, 29, 59, 5, 61, 31, 9, 1, 13, 11, 67, 17, 23, 7, 71, 9, 73, 37, 25, 19, 11, 13, 79, 5
OFFSET
1,3
COMMENTS
Conjecture: a(n) is the greatest power of a prime different from 2 that divides n.
LINKS
Dario T. de Castro, P-adic Order of Positive Integers via Binomial Coefficients, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 22, Paper A61, 2022.
EXAMPLE
For n = 15, a(15) = 5. To understand this result, consider the largest set S_2, which is the S_2(k0=15, 15). According to the definition, S_2(n, n) is the set of elements of the form (1/n)*binomial(n, k), where k goes from 1 to n, skipping the multiples of 2. The elements of S_2(15, 15) are: {1, 0, 91/3, 0, 1001/5, 0, 429, 0, 1001/3, 0, 91, 0, 7, 0, 1/15}, where the zeros were put pedagogically to identify the skipped terms, i.e., when k is divisible by 2. At this point we verify which of the nested subsets {1}, {1, 0}, {1, 0, 91/3}, {1, 0, 91/3, 0}, {1, 0, 91/3, 0, 1001/5},... will match for the first time the p-adic order’s formula. If k vary from 1 to 5 (instead of 15) we see that the lowest common denominator of the set S_2(5, 15) will be 15. So, L_2(5, 15) = 15 and the equation v_2(15) = log_2(15/15) yields a True result. Then we may say that a(15) = 5 specifically because 5 was the least k0.
MATHEMATICA
j = 1;
Nmax = 250;
Array[val, Nmax];
Do[val[i] = 0, {i, 1, Nmax}];
Do[flag = 0;
Do[If[(flag == 0 &&
Prime[j]^IntegerExponent[n, Prime[j]] ==
n/LCM[Table[
If[Divisible[k, Prime[j]], 1,
Denominator[(1/n) Binomial[n, k]]], {k, 1, k}] /.
List -> Sequence]), val[n] = k; flag = 1; , Continue], {k, 1,
n, 1}], {n, 1, Nmax}];
tabseq = Table[val[i], {i, 1, Nmax}];
PROG
(PARI) Lp(k, n, p) = {my(list = List()); for (i=1, k, if (i%p, listput(list, binomial(n, i)/n)); ); lcm(apply(denominator, Vec(list))); }
isok(k, n, v, p) = p^v == n/Lp(k, n, p);
a(n, p=2) = {my(k=1, v=valuation(n, p)); for (k=1, n, if (isok(k, n, v, p), return(k)); ); n; } \\ Michel Marcus, Apr 22 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Dario T. de Castro, Apr 09 2021
STATUS
approved