[go: up one dir, main page]

login
A343180
Trajectory of 1 under the morphism 1 -> 12, 2 -> 32, 3 -> 14, 4 -> 34.
1
1, 2, 3, 2, 1, 4, 3, 2, 1, 2, 3, 4, 1, 4, 3, 2, 1, 2, 3, 2, 1, 4, 3, 4, 1, 2, 3, 4, 1, 4, 3, 2, 1, 2, 3, 2, 1, 4, 3, 2, 1, 2, 3, 4, 1, 4, 3, 4, 1, 2, 3, 2, 1, 4, 3, 4, 1, 2, 3, 4, 1, 4, 3, 2, 1, 2, 3, 2, 1, 4, 3, 2, 1, 2, 3, 4, 1, 4, 3, 2, 1, 2, 3, 2, 1, 4, 3, 4, 1, 2, 3, 4, 1, 4, 3
OFFSET
0,2
LINKS
J.-P. Allouche and M. Mendes France, Automata and Automatic Sequences, in: Axel F. and Gratias D. (eds), Beyond Quasicrystals. Centre de Physique des Houches, vol 3. Springer, Berlin, Heidelberg, pp. 293-367, 1995; DOI https://doi.org/10.1007/978-3-662-03130-8_11. See page 6.
J.-P. Allouche and M. Mendes France, Automata and Automatic Sequences, in: Axel F. and Gratias D. (eds), Beyond Quasicrystals. Centre de Physique des Houches, vol 3. Springer, Berlin, Heidelberg, pp. 293-367, 1995; DOI https://doi.org/10.1007/978-3-662-03130-8_11. See page 6. [Local copy]
MAPLE
f(1):= (1, 2): f(2):= (3, 2): f(3) := (1, 4); f(4) := (3, 4); #
A:= [1]:
for i from 1 to 8 do A:= map(f, A) od:
A;
CROSSREFS
A112658 is another version of the same sequence.
Sequence in context: A344092 A118457 A319247 * A129773 A105789 A259579
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 02 2021
STATUS
approved