[go: up one dir, main page]

login
A342961
Primes p such that p + the sum of its prime digits is prime.
2
11, 19, 29, 37, 41, 53, 61, 73, 89, 101, 109, 149, 181, 191, 199, 229, 233, 257, 269, 277, 281, 307, 331, 359, 379, 383, 401, 409, 419, 433, 449, 461, 491, 499, 563, 587, 593, 601, 619, 641, 653, 661, 673, 677, 691, 727, 797, 809, 811, 821, 881, 911, 919, 937, 941, 977, 991, 1009, 1019, 1033
OFFSET
1,1
LINKS
EXAMPLE
a(3) = 29 is a term because it is prime, the sum of its prime digits is 2, and 29+2 = 31 is also prime.
MAPLE
f:= p -> p + convert(select(isprime, convert(p, base, 10)), `+`):
select(t -> isprime(t) and isprime(f(t)), [seq(i, i=3..2000, 2)]);
MATHEMATICA
Select[Prime@Range@200, PrimeQ@Total[Join[{#}, Select[IntegerDigits@#, PrimeQ]]]&] (* Giorgos Kalogeropoulos, Apr 01 2021 *)
PROG
(PARI) isok(p) = isprime(p) && isprime(p+sumdigits(p)); \\ Michel Marcus, Apr 01 2021
CROSSREFS
Includes A034844. Cf. A085563, A342962.
Sequence in context: A196095 A268271 A053032 * A277123 A034099 A034109
KEYWORD
nonn,base
AUTHOR
J. M. Bergot and Robert Israel, Mar 31 2021
STATUS
approved