OFFSET
0,3
COMMENTS
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).
LINKS
Eric Weisstein's World of Mathematics, Logarithmically Concave Sequence.
EXAMPLE
The partition (12,6,3) has first quotients (1/2,1/2) so is counted under a(21).
The a(1) = 1 through a(9) = 7 partitions:
1 2 3 4 5 6 7 8 9
11 21 22 32 33 43 44 54
111 31 41 42 52 53 63
1111 11111 51 61 62 72
222 421 71 81
111111 1111111 2222 333
11111111 111111111
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], SameQ@@Divide@@@Partition[#, 2, 1]&]], {n, 0, 30}]
CROSSREFS
The version for differences instead of quotients is A049988.
The ordered version is A342495.
The distinct version is A342514.
The strict case is A342515.
The Heinz numbers of these partitions are A342522.
A000005 counts constant partitions.
A167865 counts strict chains of divisors > 1 summing to n.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 17 2021
STATUS
approved