[go: up one dir, main page]

login
A342059
Triangle read by rows: T(n,k) is the number of embeddings on the sphere of 2-connected planar graphs with n nodes and k faces up to orientation preserving isomorphisms, n >= 3, k=2..2*n-4.
5
1, 1, 1, 1, 1, 2, 5, 2, 1, 1, 3, 17, 31, 22, 6, 2, 1, 4, 42, 157, 318, 265, 123, 26, 6, 1, 6, 87, 576, 2128, 4009, 4055, 2332, 804, 147, 17, 1, 7, 161, 1664, 9659, 31252, 59244, 66289, 46521, 20604, 5743, 892, 73, 1, 9, 286, 4151, 34700, 168757, 505410, 952044, 1156127, 931227, 506318, 183980, 43180, 5876, 389
OFFSET
3,6
COMMENTS
The number of edges is n+k-2.
Terms of this sequence can be computed using the tool "plantri". The expanded reference gives rows 3..15 of this table.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 3..171 (rows 3..15)
Gunnar Brinkmann and Brendan McKay, Fast generation of planar graphs (expanded edition), Tables 23-26.
FORMULA
T(n,2) = 1.
T(n,3) = A253186(n-2).
EXAMPLE
Triangle begins:
1;
1, 1, 1;
1, 2, 5, 2, 1;
1, 3, 17, 31, 22, 6, 2;
1, 4, 42, 157, 318, 265, 123, 26, 6;
1, 6, 87, 576, 2128, 4009, 4055, 2332, 804, 147, 17;
...
CROSSREFS
Row sums are A342058.
Cf. A006406 (by edges), A239893 (3-connected), A342060.
Sequence in context: A064334 A320032 A270061 * A061176 A180957 A124780
KEYWORD
nonn,tabf
AUTHOR
Andrew Howroyd, Mar 27 2021
STATUS
approved