[go: up one dir, main page]

login
A341479
a(n) = Product_{1<=j,k<=n} (4*sin((2*j-1)*Pi/(2*n))^2 + 4*sin((2*k-1)*Pi/(2*n))^2).
3
1, 8, 256, 80000, 268435456, 9503683872768, 3503536769037500416, 13371518717864846127300608, 527073330112110826119518513790976, 214344906329057967318939007805581230080000
OFFSET
0,2
FORMULA
a(n) ~ 2 * exp(4*G*n^2/Pi), where G is Catalan's constant A006752. - Vaclav Kotesovec, Feb 14 2021
MATHEMATICA
Table[Product[4*Sin[(2*j - 1)*Pi/(2*n)]^2 + 4*Sin[(2*k - 1)*Pi/(2*n)]^2, {k, 1, n}, {j, 1, n}], {n, 0, 12}] // Round (* Vaclav Kotesovec, Feb 14 2021 *)
PROG
(PARI) default(realprecision, 120);
a(n) = round(prod(j=1, n, prod(k=1, n, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin((2*k-1)*Pi/(2*n))^2)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 13 2021
STATUS
approved