[go: up one dir, main page]

login
A341244
Expansion of (-1 + Product_{k>=1} 1 / (1 + (-x)^k))^5.
9
1, 0, 5, 5, 15, 25, 45, 80, 125, 210, 321, 500, 745, 1110, 1620, 2326, 3315, 4660, 6500, 8955, 12261, 16640, 22425, 29990, 39870, 52701, 69230, 90460, 117620, 152225, 196066, 251455, 321195, 408710, 518060, 654317, 823690, 1033535, 1292690, 1611970, 2004462, 2485605
OFFSET
5,3
FORMULA
G.f.: (-1 + Product_{k>=1} (1 + x^(2*k - 1)))^5.
MAPLE
g:= proc(n) option remember; `if`(n=0, 1, add(add([0, d, -d, d]
[1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
end:
b:= proc(n, k) option remember; `if`(k<2, `if`(n=0, 1-k, g(n)),
(q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
end:
a:= n-> b(n, 5):
seq(a(n), n=5..46); # Alois P. Heinz, Feb 07 2021
MATHEMATICA
nmax = 46; CoefficientList[Series[(-1 + Product[1/(1 + (-x)^k), {k, 1, nmax}])^5, {x, 0, nmax}], x] // Drop[#, 5] &
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 07 2021
STATUS
approved