[go: up one dir, main page]

login
A340812
Array read by antidiagonals: T(n,k) is the number of unlabeled oriented k-gonal 2-trees with n oriented polygons, n >= 0, k >= 2.
5
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 3, 7, 6, 1, 1, 1, 3, 11, 18, 11, 1, 1, 1, 4, 17, 49, 68, 23, 1, 1, 1, 4, 25, 96, 252, 251, 47, 1, 1, 1, 5, 33, 177, 687, 1406, 1020, 106, 1, 1, 1, 5, 43, 285, 1537, 5087, 8405, 4258, 235, 1, 1, 1, 6, 55, 442, 3014, 14310, 40546, 52348, 18580, 551
OFFSET
0,10
COMMENTS
See section 3 of the Labelle reference.
LINKS
G. Labelle, C. Lamathe and P. Leroux, Labeled and unlabeled enumeration of k-gonal 2-trees, arXiv:math/0312424 [math.CO], Dec 23 2003.
FORMULA
G.f. of column k: B(x) - x*B(x)^k + x*(Sum_{d|k} phi(d)*B(x^d)^(k/d))/k, where B(x) if the g.f. of column k of A340814.
EXAMPLE
Array begins:
=========================================================
n\k | 2 3 4 5 6 7 8 9
----+----------------------------------------------------
0 | 1 1 1 1 1 1 1 1 ...
1 | 1 1 1 1 1 1 1 1 ...
2 | 1 1 1 1 1 1 1 1 ...
3 | 2 2 3 3 4 4 5 5 ...
4 | 3 7 11 17 25 33 43 55 ...
5 | 6 18 49 96 177 285 442 635 ...
6 | 11 68 252 687 1537 3014 5370 8901 ...
7 | 23 251 1406 5087 14310 33632 70000 132533 ...
8 | 47 1020 8405 40546 141582 399065 966254 2089103 ...
...
PROG
(PARI) \\ here B(n, k) gives column k of A340814.
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
B(n, k)={my(p=1+O(x)); for(n=1, n, p=1+x*Ser(EulerT(Vec(p^(k-1))))); p}
C(n, k)={my(p=B(n, k)); Vec(p - x*p^k + x*sumdiv(k, d, eulerphi(d)*subst(p + O(x*x^(n\d)), x, x^d)^(k/d))/k)}
{ Mat(vector(7, k, C(7, k+1)~)) }
CROSSREFS
Columns 2..4 are A000055, A303742, A340813.
Cf. A340811 (unoriented case), A340814 (edge-rooted case).
Sequence in context: A046854 A184957 A340811 * A228349 A285718 A205792
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Feb 02 2021
STATUS
approved