[go: up one dir, main page]

login
A340729
a(n) is the least k such that there are exactly n divisors d of k for which k/d-d is prime.
1
1, 3, 8, 18, 60, 150, 210, 420, 390, 840, 7770, 5460, 9282, 2310, 3570, 2730, 10710, 39270, 117810, 60060, 154770, 43890, 53130, 46410, 66990, 62790, 176358, 106260, 30030, 642180, 1111110, 1919190, 930930, 1688610, 1360590, 1531530, 1291290, 570570, 1138830, 510510, 690690, 1141140, 870870
OFFSET
0,2
COMMENTS
a(n) is the least solution of A340728(k) = n.
EXAMPLE
a(3) = 18 because there are 3 such divisors of 18, namely 1,2,3: 18/1-1 = 17, 18/2-2 = 7 and 18/3-3 = 3, and 18 is the least number with 3 such divisors.
MAPLE
f:= proc(n) local D, i, m;
D:= sort(convert(numtheory:-divisors(n), list));
m:= nops(D);
nops(select(i -> isprime(D[m+1-i]-D[i]), [$1..(m+1)/2]));
end proc:
N:= 30: # for a(0)..a(N)
V:= Array(0..N): count:= 0:
for n from 1 while count < N+1 do
v:= f(n);
if v <= N and V[v]=0 then count:= count+1; V[v]:= n fi
od:
convert(V, list);
CROSSREFS
Cf. A340728.
Sequence in context: A363599 A307397 A032100 * A226593 A023371 A358984
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Jan 17 2021
STATUS
approved