[go: up one dir, main page]

login
A340400
a(n) is the greatest Fibonacci number < 2^(n+1).
2
1, 3, 5, 13, 21, 55, 89, 233, 377, 987, 1597, 2584, 6765, 10946, 28657, 46368, 121393, 196418, 514229, 832040, 1346269, 3524578, 5702887, 14930352, 24157817, 63245986, 102334155, 267914296, 433494437, 701408733, 1836311903, 2971215073, 7778742049, 12586269025
OFFSET
0,2
COMMENTS
a(n) is also the greatest Fibonacci number whose binary expansion has n+1 digits.
FORMULA
2^n <= A340399(n) <= a(n) < 2^(n+1).
PROG
(PARI) a(n) = my (g=0); for (i=1, oo, my (f=fibonacci(i)); if (f>=2^(n+1), return (g), g=f))
CROSSREFS
KEYWORD
nonn
AUTHOR
Rémy Sigrist, Jan 06 2021
STATUS
approved