[go: up one dir, main page]

login
A340308
Primes p such that (p*q+r*s)/2 is prime, where q,r,s are the next 3 primes after p.
2
5, 7, 11, 23, 53, 73, 107, 137, 157, 179, 263, 281, 317, 373, 457, 593, 673, 821, 857, 1087, 1297, 1481, 1619, 1753, 1789, 2203, 2221, 2383, 2459, 2557, 2683, 2767, 2797, 2803, 2833, 3331, 3359, 3371, 3733, 3967, 4051, 4217, 4783, 4967, 5023, 5113, 5171, 5309, 5351, 5443, 5449, 5573, 6079, 6163
OFFSET
1,1
LINKS
EXAMPLE
a(3) = 11 is a term because (11*13+17*19)/2 = 233 is prime.
MAPLE
q:= 3: r:= 5: s:= 7:
count:= 0: R:= NULL:
while count < 100 do
p:= q; q:= r; r:= s; s:= nextprime(s);
v:= (p*q + r*s)/2;
if isprime(v) then count:= count+1; R:= R, p fi
od:
R;
MATHEMATICA
Select[Partition[Prime[Range[1000]], 4, 1], PrimeQ[(#[[1]]#[[2]]+#[[3]]#[[4]])/2]&][[All, 1]] (* Harvey P. Dale, Feb 06 2023 *)
PROG
(PARI) isok(p) = if (isprime(p) && (p>2), my(q=nextprime(p+1), r=nextprime(q+1), s=nextprime(r+1)); isprime((p*q+r*s)/2)); \\ Michel Marcus, Jan 04 2021
CROSSREFS
Cf. A340307.
Sequence in context: A005385 A181602 A075705 * A339096 A249735 A218394
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Jan 03 2021
STATUS
approved