[go: up one dir, main page]

login
A340045
Numbers that are the sum of a fourth power s and a square t such that 0 < s <= t.
0
2, 5, 10, 17, 26, 32, 37, 41, 50, 52, 65, 80, 82, 97, 101, 116, 122, 137, 145, 160, 162, 170, 181, 185, 197, 202, 212, 225, 226, 241, 250, 257, 272, 277, 290, 305, 306, 325, 337, 340, 362, 370, 377, 401, 405, 416, 442, 457, 481, 485, 500, 512, 522, 530, 545, 565, 577, 580
OFFSET
1,1
EXAMPLE
10 is in the sequence since 1^4 + 3^2 = 1 + 9 = 10, where 0 < 1 <= 9.
MATHEMATICA
Table[If[Sum[(Floor[i^(1/4)] - Floor[(i - 1)^(1/4)]) (Floor[(n - i)^(1/2)] - Floor[(n - i - 1)^(1/2)]), {i, Floor[n/2]}] > 0, n, {}], {n, 1000}] // Flatten
CROSSREFS
Cf. A010052.
Sequence in context: A018682 A375703 A078393 * A100292 A078325 A059591
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Dec 26 2020
STATUS
approved