
Adv. Appl. Clifford Algebras (2018) 28:17
c© 2018 Springer International Publishing AG,

part of Springer Nature

0188-7009/010001-14

published online February 7, 2018
https://doi.org/10.1007/s00006-018-0839-x

Advances in
Applied Clifford Algebras

Generalized Quaternion Rings over Z/nZ

for an Odd n
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Abstract. We consider a generalization of the quaternion ring
(

a,b
R

)
over

a commutative unital ring R that includes the case when a and b are
not units of R. In this paper, we focus on the case R = Z/nZ for and
odd n. In particular, for every odd integer n we compute the number of

non R-isomorphic generalized quaternion rings
(

a,b
Z/nZ

)
.
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1. Introduction

The origin of quaternions dates back to 1843, when William Rowan Hamil-
ton considered a 4-dimensional vector space over R with basis {1, i, j, k} and
defined an associative product given by the now classical rules i2 = j2 = −1
and ij = −ji = k. These so-called “Hamilton quaternions” turned out to be
the only division algebra over R with dimension greater than 2. Later on, this
idea was extended to define quaternion algebras over arbitrary fields. Thus, if
F is a field and a, b ∈ F\{0} we can define a unital, associative, 4-dimensional
algebra over F just considering a basis {1, i, j, k} and the product given by
i2 = a, j2 = b and ij = −ji = k. The structure of quaternion algebras over
fields of characteristic different from two is well-known. Indeed, such a quater-
nion algebra is either a division ring or isomorphic to the matrix ring M2(F )
[11, p.19]. This is no longer true if F is of characteristic 2, since quaternions
over Z/2Z are not a division ring but they form a commutative ring, while
M2(Z/2Z) is not commutative. Nevertheless, some authors consider a differ-
ent product in the characteristic 2 case given by i2 + i = a, j2 = b, and
ji = (i + 1)j = k. The algebra defined by this product is isomorphic to the
corresponding matrix ring.

∗Corresponding author.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00006-018-0839-x&domain=pdf
http://orcid.org/0000-0002-8191-3199


17 Page 2 of 14 J. M. Grau et al. Adv. Appl. Clifford Algebras

Generalizations of the notion of quaternion algebra to other commu-
tative base rings R have been considered by Kanzaki [5], Hahn [4], Knus
[6], Gross and Lucianovic [3], Tuganbaev [15], and most recently by Voight
[16,17]. Quaternions over finite rings have attracted significant attention
since they have applications in coding theory see, [9,10,14]. In [2] the case
R = Z/nZ was studied proving the following result.

Theorem 1. [2, Theorem 4] Let n be an integer and let a, b be such that
gcd(a, n) = gcd(b, n) = 1. The following hold:

(i) If n is odd, then
( a, b

Z/nZ

) ∼= M2(Z/nZ).

(ii) If n = 2sm with s > 0 and m odd, then
( a, b

Z/nZ

) ∼=
{

M2(Z/mZ) × (−1,−1
Z/2sZ

), if s = 1 or a ≡ b ≡ −1 (mod 4);

M2(Z/mZ) × ( 1,1
Z/2sZ

), otherwise.

In this paper, we extend the concept of quaternion rings over commu-
tative, associative, unital rings to the case when i2 and j2 are not necessarily
units of the ring R. In particular, we will focus on the case R = Z/nZ for an
odd n.

2. Basic Concepts

Let R be a commutative and associative ring with identity and let H(R)
denote the free R-module of rank 4 with basis {1, i, j, k}. That is,

H(R) = {x0 + x1i + x2j + x3k : x0, x1, x2, x3 ∈ R}.

Now, let a, b ∈ R and define an associative multiplication in H(R) according
to the following rules:

i2 = a,

j2 = b,

ij = −ji = k.

Thus, we obtain an associative, unital ring called a quaternion ring over R

which is denoted by
(

a,b
R

)
.

Definition 1. A standard basis of
(

a,b
R

)
is any basis B = {1, I, J,K} of the

free R-module H(R) such that

I2 = a,

J2 = b,

IJ = −JI = K.

Given the standard basis {1, i, j, k}, the elements of the submodule R〈i, j, k〉
are called pure quaternions. Note that the square of a pure quaternion always
lays on R.



Vol. 28 (2018) Generalized Quaternion Rings. . . Page 3 of 14 17

Remark 1. Given q ∈
(

a,b
R

)
and a fixed standard basis, there exist x0 ∈ R

and a pure quaternion q0 such that q = x0 + q0. Observe that both x0 and q0

are uniquely determined and also that the only pure quaternion in R is 0.

The following classical concepts are not altered by the fact that a and
b are not necessarily units.

Definition 2. Consider the standard basis {1, i, j, k} and let q ∈
(

a,b
R

)
. Put

q = x0 + q0 with x0 ∈ R and q0 = x1i + x2j + x3k a pure quaternion. Then,
(i) The conjugate of q is: q = x0 − q0 = x0 − x1i − x2j − x3k.
(ii) The trace of q is tr(q) = q + q = 2x0.
(iii) The norm of q is n(q) = qq = x2

0 − q2
0 = x2

0 − ax2
1 − bx2

2 + abx2
3.

Note that n(q), tr(q) ∈ R and n(q1q2) = n(q1)n(q2).

Remark 2. Observe that, if q is a pure quaternion, then q = −q and tr(q) = 0.
The converse also holds only if R has odd characteristic.

In what follows, we assume that an homomorphism f between two
quaternion algebras over a ring R is also a R-module homomorphism. Hence,
f(1) = 1 and it fixes every element of the base ring R. For the sake of sim-
plicity we will call them R-homomorphisms and an R-isomorphism is just
a bijective R-homomorphism. Now, let f :

(
a,b
R

)
→

(
c,d
R

)
be a linear map

and let us consider standard basis {1, i, j, k} and {1, I, J,K} of
(

a,b
R

)
and(

c,d
R

)
, respectively. It is clear that if f(1) = 1, f(i2) = a, f(j2) = b and

f(ij) = −f(ji) = f(k), then f induces a well-defined R-homomorphism be-
tween both quaternion rings. We will make extensive use of this fact in many
subsequent results.

In the following result we will see that R-isomorphisms preserve con-
jugation. The classical proof in the case when a and b are units (see [1,
Theorem 5.6] for instance) is no longer valid in our setting and it must be
slightly modified.

Theorem 2. Let f :
(

a,b
R

)
→

(
c,d
R

)
be an R-isomorphism. Then, for every

q ∈
(

a,b
R

)
it holds that f(q) = f(q).

Proof. Let q ∈
(

a,b
R

)
and put q = x0 + q0 with x0 ∈ R and q0 a pure

quaternion. Then, q = x0 − q0 and f(q) = f(x0)−f(q0) = x0 −f(q0). On the
other hand, f(q) = f(x0 + q0) = f(x0) + f(q0) = x0 + f(q0) = x0 + f(q0).
Hence, in order to prove the result, it is enough to prove that f(q0) = −f(q0)
for every pure quaternion q0.

Let us consider the standard basis {1, i, j, k} of
(

a,b
R

)
. Then, f(i) =

α1 + q1 with α1 ∈ R and q1 a pure quaternion in
(

c,d
R

)
. Now, since i2 ∈ R

and taking into account that f fixes R, we have that a = f(a) = f(i2) =
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f(i)2 = (α1 + q1)2 = α2
1 + q2

1 +2α1q1 ∈ R. Consequently, 2α1q1 ∈ R (because
both α2

1 and q2
1 are in R) and since 2α1q1 is a pure quaternion, it must be

2α1q1 = 0. Thus, f(2α1i) = 2α1f(i) = 2α2
1 and, since f fixes R, it follows

that 2α1i = 0 and also that 2α1 = 0. Equivalently, α1 = −α1 and then,
f(i) = α1 − q1 = −α1 − q1 = −f(i).

In the same way, it can be seen that f(j) = −f(j) and f(k) = −f(k).
Thus, if q0 = Ai + Bj + Ck is a pure quaternion in

(
a,b
R

)
we have that:

f(q0) = Af(i) + Bf(j) + Cf(k) = −Af(i) − Bf(j) − Cf(k) = −f(q0),

and the result follows. �

Since both the trace and the norm are defined in terms of the conjuga-
tion, the following result easily follows from Theorem 2.

Corollary 1. Let f :
(

a,b
R

)
→

(
c,d
R

)
be a ring isomorphism. Then, for every

q ∈
(

a,b
R

)
the following hold.

(i) tr
(
f(q)

)
= tr(q).

(ii) n
(
f(q)

)
= n(q).

Remark 3. Theorem 2 and Corollary 1 imply in particular that the conjugate,
the trace and the norm of an element are independent from the standard basis
of

(
a,b
R

)
used to compute them. Moreover, according to Remark 2, Theorem 2

implies that (in the odd characteristic case) every R-isomorphism preserves
pure quaternions.

Proposition 1. Let R be a ring with odd characteristic and Let f :
(

a,b
R

)
→(

a,c
R

)
be an R-isomorphism. Then, for some pair of standard bases the matrix

of f has the form ⎛
⎜⎜⎝

1 0 0 0
0 1 α1 α2

0 0 β1 β2

0 0 γ1 γ2

⎞
⎟⎟⎠ ,

with α1a = α2a = 0.

Proof. Let {1, i, j, k} be any standard basis in
(

a,b
R

)
. Since f(i)2 = f(i2) = a,

let us consider S the subalgebra of
(

a,c
R

)
generated by {1, f(i)} which is a

Cayley-Dickson algebra of dimension 2 [13]. To apply the Cayley-Dickson
process to S and c we consider the vector space C = S ⊕ S with a new
product defined by [13, p. 45]:

(s1, s2)(s3, s4) = (s1s3 + cs4s2, s1s4 + s3s2).

With this product, is is easily seen that C is R-isomorphic to
(

a,c
R

)
. Moreover,

the set {(1, 0), (f(i), 0), (0, 1), (0, f(i))} is a standard basis of C. With this,
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we have seen that we can extend the set {1, f(i)} to a standard basis {1, I :=
f(i), J,K} of

(
a,c
R

)
.

Now, since R has odd characteristic, f preserves pure quaternions. Thus,
f(j) = α1I + β1J + γ1K and f(k) = α2I + β2J + γ2K.

Finally, f(k) = f(ij) = f(i)f(j) = I(α1I + β1J + γ1K) = α1a + β1K +
γ1aJ must be a pure quaternion and hence α1a = 0. In the same way it can
be seen that α2a = and the result follows. �

In what follows, we will be interested in determining whether two differ-
ent quaternion rings are R-isomorphic or not. The following R-isomorphism,
which is well-known if a and b are units, also holds in our setting. The proof
is straightforward.

Lemma 1. Let a, b ∈ R. Then,
(a, b

R

) ∼=
(b, a

R

)
.

Nevertheless, some other easy R-isomorphisms that hold in the case
when a and b are units, like

(a, b

R

) ∼=
(a,−ab

R

) ∼=
(b,−ab

R

)
(1)

are, as we will see, no longer generally true in our setting.

3. Some Results Regarding
(

a,b
Z/pk Z

)
for a Prime p

Throughout this section p will denote any prime. The next two results present
some R-isomorphisms that will be useful in forthcoming sections. The first
one (Lemma 2) is, in some sense, an analogue to the classical R-isomorphism
(1). The second one (Lemma 3) presents some kind of descent principle.

Lemma 2. Let s, k be such that 0 ≤ s ≤ kwith 1 ≤ k and let a and b be
integers with gcd(a, p) = 1. Then,

( a, bps

Z/pkZ

) ∼=
(a,−abps

Z/pkZ

)
.

Proof. Let us consider standard bases {1, i, j, k} and {1, I, J,K} of
(

a,bps

Z/pkZ

)

and
(

a,−abps

Z/pkZ

)
, respectively. Then, the linear map f defined by f(1) = 1,

f(I) = i, f(J) = k and f(K) = aj clearly induces a well-defined R-homomor-
phism; which is bijective because its coordinate matrix⎛

⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 a
0 0 1 0

⎞
⎟⎟⎠

is regular over Z/pkZ. �
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Lemma 3. Let ai (1 ≤ i ≤ 4) and k ≥ 1 be integers such that
( a1, a2

Z/pkZ

) ∼=
( a3, a4

Z/pkZ

)

and let 0 < s ≤ k. If ai ≡ a′
i (mod ps) for every 1 ≤ i ≤ 4, then

( a′
1, a

′
2

Z/psZ

) ∼=
( a′

3, a
′
4

Z/psZ

)

Proof. Let f be an R-isomorphism between
(

a1,a2
Z/pkZ

)
and

(
a3,a4
Z/pkZ

)
. If A is

the coordinate matrix of f with respect to some standard bases, it is obvious
that A is regular over Z/pkZ and, consequently, also over Z/psZ.

Then, the linear map g between
(

a′
1,a′

2
Z/psZ

)
and

(
a′
3,a′

4
Z/psZ

)
defined by the

matrix A with respect to some standard bases, induces an R-isomorphism
because ai ≡ a′

i (mod ps) for every i. �

It is also interesting, and often harder, to determine whether two quater-
nion rings are not R-isomorphic. The following results go in this direction.

Lemma 4. Let p be a prime and consider integers a, b and c coprime to p.
Also, let 0 ≤ s ≤ r < k. Then, the quaternion rings R1, R2 and R3 defined
by

R1 =
(aps, bpr

Z/pkZ

)
, R2 =

( cps, 0
Z/pkZ

)
, R3 =

( 0, 0
Z/pkZ

)

are pairwise non R-isomorphic.

Proof. For each i ∈ {1, 2, 3} let us define the set Pi := {q ∈ Ri : tr(q) = 0}.
Due to Corollary 1 i), these sets are preserved by R-isomorphisms so, in order
to show that R1, R2 and R3 are pairwise non R-isomorphic, we will look for
differences between the sets Pi.

We begin by the odd p case. In this case the sets Pi are precisely the sets
of pure quaternions. First, we observe that for every element q ∈ P3 it holds
that q2 = 0, while P1 and P2 both clearly contain elements whose square is
non-zero. This implies that R3 is not R-isomorphic to R1 or R2. On the other
hand, the set P2\pP2 contains elements with zero square while this is not the
case for P1\pP1. This implies that R1 and R2 are not R-isomorphic.

In the p = 2 case, the sets Pi are no longer the sets of pure quaternions.
Instead, we have that Pi = {α2k−1 +q0 : q0 is a pure quaternion} but we can
reason in the exact same way. �

Lemma 5. Let p be a prime and consider integers a, b, c and d coprime to
p. Also, let s1 ≤ s2 ≤ k and s3 ≤ s4 ≤ k and assume that either s1 �= s3 or
s2 �= s4. Then

(aps1 , bps2

Z/pkZ

)
�

(cps3 , dps4

Z/pkZ

)

Proof. Let us assume that both rings are R-isomorphic. Without loss of gen-
erality, we can also assume that s1 ≤ s3. Five different situations arise:
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(i) If s1 = s3 = s2 < s4, then Lemma 3 implies that
(aps1 , bps1

Z/ps4Z

) ∼=
( cps1 , 0

Z/ps4Z

)
,

which contradicts Lemma 4.
(ii) If s1 = s3 < s2 < s4, then due to Lemma 3 we have that

(aps1 , bps2

Z/ps4Z

) ∼=
( cps1 , 0

Z/ps4Z

)
,

which contradicts Lemma 4.
(iii) If s1 = s2 < s3, by Lemma 3 we have that

(aps1 , bps1

Z/ps3Z

) ∼=
( 0, 0

Z/ps3Z

)
,

which contradicts Lemma 4 again.
(iv) If s1 < s2 ≤ s3, Lemma 3 implies that

( aps1 , 0
Z/ps2Z

) ∼=
( 0, 0

Z/ps2Z

)
,

contradicting Lemma 4.
(v) If s1 < s3 ≤ s2, Lemma 3 leads to

( aps1 , 0
Z/ps3Z

) ∼=
( 0, 0

Z/ps3Z

)
,

which is a contradiction due to Lemma 4.
Hence, in any case we reach a contradiction and the result follows. �

4. Quaternions over Z/pkZ for an Odd Prime p

This section is devoted to determine the number of different generalized
quaternion rings over Z/pkZ for an odd prime p, up to R-isomorphism. Hence,
throughout this section p will be assumed to be an odd prime.

Lemma 6. Let s and t be integers coprime to p such that st is a quadratic
residue modulo p and let m be any integer. Then, for every r ≥ 0,

R =
( tpr,m

Z/pkZ

) ∼=
( spr,m

Z/pkZ

)
= S.

Proof. Since gcd(st, p) = 1, it follows that st is also a quadratic residue
modulo pk so let x be an integer such that x2 ≡ ts−1 (mod pk). Let us
consider {1, i, j, k} and {1, I, J,K} standard bases of R and S, respectively.
Then, the linear map f : R → S whose matrix with respect to these bases is

A =

⎛
⎜⎜⎝

1 0 0 0
0 x 0 0
0 0 1 0
0 0 0 x

⎞
⎟⎟⎠

clearly induces a well-defined R-homomorphism because f(i2) = f(i)2 =
(xI)2 = x2I2 ≡ ts−1spr ≡ tpr (mod pk), f(j2) = f(j)2 = J2 = m, f(ij) =
f(i)f(j) = xIJ = xK = f(k) and f(ji) = f(j)f(i) = J(xI) = xJI =
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−xK = −f(k). Moreover, since A is regular over Z/pkZ, it is in fact an
R-isomorphism and the result follows. �

Lemma 7. Let s be an integer such that gcd(p, s) = 1. Then, for every r ≥ 0,

R =
( pr, pr

Z/pkZ

) ∼=
(spr, spr

Z/pkZ

)
= S

Proof. Let x, y ∈ Z/pkZ∗ such that x2 + y2 ≡ s−1 (mod pk) (such x, y exist
due to [2, Proposition 1]). Now let us consider {1, i, j, k} and {1, I, J,K}
standard bases of R and S, respectively. Then, the linear map whose matrix
with respect to these bases is

A =

⎛
⎜⎜⎝

1 0 0 0
0 x −y 0
0 y x 0
0 0 0 s−1

⎞
⎟⎟⎠

induces a well-defined R-homomorphism because

f(i2) = f(i)2 = (xI + yJ)2 = (x2 + y2)spr ≡ pr (mod pk),

f(j2) = f(j)2 = (−yI + xJ)2 = (x2 + y2)spr ≡ pr (mod pk),
f(ij) = f(i)f(j) = (xI + yJ)(−yI + xJ) ≡ (x2 + y2)K

≡ s−1K = f(k) (mod pk),
f(ji) = f(j)f(i) = (−yI + xJ)(xI + yJ) ≡ −(x2 + y2)K

≡ −s−1K = −f(k) (mod pk).

Since, in addition, A is regular over Z/pkZ it is an R-isomorphism and the
proof is complete. �

Lemma 8. Let u be a quadratic nonresidue modulo p with p � u and consider
integers a and b coprime to p and let 0 ≤ s. Then,

(i)
( 1, aps

Z/pkZ

) ∼=
( 1, ps

Z/pkZ

)
and

( u, ps

Z/pkZ

) ∼=
( u, bps

Z/pkZ

)

(ii) The isomorphism
( 1, ps

Z/pkZ

) ∼=
( u, ps

Z/pkZ

)

holds if and only if s = 0.

Proof. (i) To see that R =
( 1, ps

Z/pkZ

) ∼=
( 1, aps

Z/pkZ

)
= S, let us consider

{1, i, j, k} and {1, I, J,K} standard bases of R and S, respectively. Con-
sider x, y ∈ Z/pkZ such that x2 − y2 ≡ a−1 (mod pk) (such x, y exist
because it is enough to consider x + y ≡ a−1 and x − y ≡ 1 and, since
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p is odd, we can solve this system of equations). Then, the linear map
whose matrix with respect to these bases is

A =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 x y
0 0 y x

⎞
⎟⎟⎠

induces a well-defined R-homomorphism because

f(i2) = f(i)2 = I2 = 1,

f(j2) = (xJ + yK)2 = x2J2 + y2K2 = x2aps − y2aps = aps(x2 − y2)

≡ ps (mod pk),
f(ij) = f(i)f(j) = I(xJ + yK) = yJ + xK = f(k),
f(ji) = f(j)f(i) = (xJ + yK)I = −(yJ + xK) = −f(k).

The fact that it is an R-isomorphism follows because A is regular over
Z/pkZ.

The remaining R-isomorphisms can be proved in a similar way.

(ii) Assume that s > 0. To see that
( 1, ps

Z/pkZ

)
�∼=

( u, ps

Z/pkZ

)
it is enough

to observe that
( 1, ps

Z/pkZ

)
does not contain any pure quaternion q with

q2 = u. In fact, if {1, i, j, k} is a standard basis, q = ai + bj + ck and
q2 = a2 + (b2 − c2)ps. Hence, if q2 ≡ u (mod pk) if follows that u is a
quadratic residue modulo p, which is a contradiction.

On the other hand, if s = 0, we know that
(

1,1
Z/pkZ

) ∼=
(

u,1
Z/pkZ

)

using [2, Theorem 4].
�

Lemma 9. Let u be a quadratic nonresidue modulo p with p � u and let 0 <
s < k. Then,

(i) R1 =
(ups, ps

Z/pkZ

)
�∼=

( ps, ps

Z/pkZ

)
= R2.

(ii) S1 =
( ups, 0

Z/pkZ

)
�

( ps, 0
Z/pkZ

)
= S2.

Proof. (i) Let us consider

Ni := {q ∈ Ri : q is a pure quaternion,n(q) = 0}.

Since R-isomorphisms preserve norms and pure quaternions, in order to
prove that R1 � R2 we will see that card(N1) �= card(N2). To do so, let
{1, i, j, k} and {1, I, J,K} be standard bases of R1 and R2, respectively.
Then, if q1 ∈ N1, it must be q1 = x1i + x2j + x3k with x2

1ups + x2
2p

s −
x2

3up2s ≡ 0 (mod pk). On the other hand, if q2 ∈ N2, it must be q2 =
y1I + y2J + y3K with y2

1ps + y2
2ps − y2

3p2s ≡ 0 (mod pk).
Now, let (a1, a2, a3) ∈ (

Z/pk−sZ
)3 be a solution of the congruence

x2
1u+x2

2 −x2
3ups ≡ 0 (mod pk−s) and let us define bi = ai + lip

k−s with
0 ≤ li < ps. Then, it is straighforward that (b1, b2, b3) ∈ (

Z/pkZ
)3 is a
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solution of the congruence x2
1ups + x2

2p
s − x2

3up2s ≡ 0 (mod pk). This
implies that card(N1)/p3s is the number of solutions of the congruence

x2
1u + x2

2 − x2
3ups ≡ 0 (mod pk−s), (2)

while it can be seen in the same way that card(N2)/p3s is the number
of solutions of the congruence

y2
1 + y2

2 − y2
3ps ≡ 0 (mod pk−s). (3)

Now, reducing modulo p, we can see that:
• If −1 is a quadratic residue modulo p (i.e., if p ≡ 1 (mod 4)), then

the congruence (3) has non-zero solutions while the congruence (2)
has not.

• If −1 is not a quadratic residue modulo p (i.e., if p ≡ 3 (mod 4)),
then the congruence (2) has non-zero solutions while the congru-
ence (3) has not.

In any case, it follows that card(N1) �= card(N2) as claimed.
(ii) For this case, it is enough to observe that S2 does not contain pure

quaternions q such that q2 = ups, while S1 obviously does contain such
type of elements. To do so, just note that the congruence x2ps ≡ ups

(mod pk) ha no solutions because u is a quadratic nonresidue modulo
p.

�

Lemma 10. Let u be a quadratic nonresidue (mod p) with p � u and let 0 <

s < r < k. Then, the quaternion rings R1 =
(ups, upr

Z/pkZ

)
, R2 =

(ps, upr

Z/pkZ

)
,

R3 =
(ups, pr

Z/pkZ

)
and R4 =

( ps, pr

Z/pkZ

)
are pairwise non R-isomorphic.

Proof. Let us see that R1 � R2, R1 � R4, R2 � R3 and R3 � R4. If they
were R-isomorphic, the due to Lemma 3 we would have (reducing modulo

pr) that
( ups, 0

Z/prZ

) ∼=
( ps, 0

Z/prZ

)
, which contradicts Lemma 9.

Now, let us see that R1 � R3. Assume that R1
∼= R3. Then, due to

Proposition 1, we can consider {1, i, j, k} and {1, I, J,K} standard bases of
R1 and R3, respectively such that the matrix of the R-isomorphism with
respect to these bases is

⎛
⎜⎜⎝

1 0 0 0
0 1 α1 α2

0 0 β1 β2

0 0 γ1 γ2

⎞
⎟⎟⎠ ,

with α1ups = 0.
In particular, upr = j2 = f(j2) = f(j)2 = (α1I+β1J+γ1K)2 = α2

1ups+
β2

1pr − γ2
1upr+s = β2

1pr − γ2
1u2pr+s. In other words, β2

1pr − γ2
1upr+s ≡ upr

(mod pk) but this implies that β2
1 −γ2

1ups ≡ u (mod pk−r) and, consequently,
that β2

1 ≡ u (mod p) which is a contradiction because u is a quadratic non-
residue.
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The remaining case, namely R2 � R4 can be proved in the exact same
way. �
Corollary 2. Let u be a quadratic nonresidue modulo p with p � u. Consider
integers a and b coprime to p and let 0 < r. Then,

( a, bpr

Z/pkZ

) ∼=
⎧
⎨
⎩

(
u,pr

Z/pkZ

)
, if a is a quadratic nonresidue modulo p;(

1,pr

Z/pkZ

)
, if a is a quadratic residue modulo p.

Proof. If a is a quadratic nonresidue:
( a, bpr

Z/pkZ

) ∼=
Lem. 8

( a, pr

Z/pkZ

) ∼=
Lem. 6

( u, pr

Z/pkZ

)
.

Now, if a is a quadratic residue:
( a, bpr

Z/pkZ

) ∼=
Lem. 6

( 1, bpr

Z/pkZ

) ∼=
Lem. 8

( 1, pr

Z/pkZ

)
.

Finally,
(

u,pr

Z/pkZ

)
and

(
1,pr

Z/pkZ

)
are not isomorphic due to Lemma 8. �

Corollary 3. Let u be a quadratic nonresidue modulo p with p � u. Consider
integers a and b coprime to p and let 0 < r. Then,

(apr, bpr

Z/pkZ

) ∼=
⎧
⎨
⎩

(
upr,pr

Z/pkZ

)
, if ab is a quadratic nonresidue modulo p;(

pr,pr

Z/pkZ

)
, if ab is a quadratic residue modulo p.

Proof. If ab is a quadratic nonresidue, only one among a and b is a quadratic
residue. We can assume without loss of generality that a is a quadratic residue
and that b is a quadratic nonresidue (so ub is a quadratic residue) and then:

(apr, bpr

Z/pkZ

) ∼=
Lem. 6

(apr, upr

Z/pkZ

) ∼=
Lem. 6

(pr, upr

Z/pkZ

)
.

Now, if ab is a quadratic residue:
(apr, bpr

Z/pkZ

) ∼=
Lem. 6

(bpr, bpr

Z/pkZ

) ∼=
Lem. 7

( pr, pr

Z/pkZ

)
.

Finally,
(

pr,pr

Z/pkZ

)
and

(
upr,pr

Z/pkZ

)
are not isomorphic due to Lemma 9. �

Corollary 4. Let u be a quadratic nonresidue modulo p with p � u. Consider
integers a and b coprime to p and let 0 < s < r. Then,

(aps, bpr

Z/pkZ

) ∼=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
ups,pr

Z/pkZ

)
, if only b is a quadratic residue modulo p;

(
ps,upr

Z/pkZ

)
, if only a is a quadratic residue (mod p).

(
ps,pr

Z/pkZ

)
, if both a and b are quadratic residues modulo p.(

ups,upr

Z/pkZ

)
, if both a and b are quadratic nonresidues modulo p.

Proof. Like in the previous results, it is enough to apply Lemma 6 repeatedly.
The four different cases that arise are non-isomorphic due to Lemma 10. �

Now, we can prove the main result of this section.



17 Page 12 of 14 J. M. Grau et al. Adv. Appl. Clifford Algebras

Theorem 3. Let p be an odd prime and let k be a positive integer. Then,
there exist exactly 2k2 + 2 non R-isomorphic generalized quaternion rings
over Z/pkZ.

Proof. Taking into account the previous results, any generalized quaternion
ring over Z/pkZ is R-isomorphic to one of the following:

(ups, upr

Z/pkZ

)
,
(ps, upr

Z/pkZ

)
,
(ups, pr

Z/pkZ

)
,
( ps, pr

Z/pkZ

)
,

where u is a quadratic nonresidue (mod p) with p � u and 0 ≤ s ≤ r ≤ k.
• If 0 = s = r, due to Lemmata 1, 7 and 8, there is only one ring to

consider, namely
(

1,1
Z/pkZ

)
.

• If 0 = s < r < k, we must consider the rings
( u, upr

Z/pkZ

)
,
( 1, upr

Z/pkZ

)
,
( u, pr

Z/pkZ

)
,
( 1, pr

Z/pkZ

)
.

Due to Lemma 8 we know that
(

u,upr

Z/pkZ

) ∼=
(

u,pr

Z/pkZ

)
,
(

1,upr

Z/pkZ

) ∼=
(

1,pr

Z/pkZ

)

and
(

u,pr

Z/pkZ

)
�

(
1,pr

Z/pkZ

)
. Hence, in this case we have 2 non R-isomorphic

generalized quaternion rings for each 1 ≤ r ≤ k − 1. A total of 2(k − 1).
• If 0 = s and k = r we must only consider the rings

( u, 0
Z/pkZ

)
,
( 1, 0

Z/pkZ

)

which are non-isomorphic due to Lemma 8. Thus, in this case we have
2 non R-isomorphic generalized quaternion rings.

• If 0 < s = r < k, we must consider the rings
(upr, upr

Z/pkZ

)
,
(pr, upr

Z/pkZ

)
,
(upr, pr

Z/pkZ

)
,
( pr, pr

Z/pkZ

)
.

Using Lemma 1, Lemma 7 and Lemma 9 we know that
(

upr,upr

Z/pkZ

) ∼=(
pr,pr

Z/pkZ

)
�

(
upr,pr

Z/pkZ

) ∼=
(

pr,upr

Z/pkZ

)
. Hence, in this case we have 2 non

R-isomorphic generalized quaternion rings for each 1 ≤ r ≤ k − 1 for a
total of 2(k − 1).

• If 0 < s < r < k, Lemma 10 implies that the four rings are non R-
isomorphic. Hence, in this case we have 2 non R-isomorphic generalized
quaternion rings for each 1 ≤ s ≤ k − 2 and each s + 1 ≤ r ≤ k − 1. A
total of 2(k − 2)(k − 1).

• If 0 < s < r = k, we must only consider the rings
( ups, 0

Z/pkZ

)
,
( ps, 0

Z/pkZ

)

which are non R-isomorphic due to Lemma 9. Thus, in this case we have
2 non R-isomorphic generalized quaternion rings for each 1 ≤ s ≤ k−1.
A total of 2(k − 1).

• If s = r = k there is only one ring to consider, namely
(

0,0
Z/pkZ

)
.
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Finally, taking into consideration all the previous information, we conclude
that there exist

1 + 2(k − 1) + 2 + 2(k − 1) + 2(k − 2)(k − 1) + 2(k − 1) + 1 = 2k2 + 2

non R-isomorphic generalized quaternion rings over Z/pkZ. �

Remark 4. The sequence ak = 2k2 + 2 is sequence A005893 in the OEIS.

5. Quaternions over Z/nZ for an Odd n

Note that if n = pr1
1 . . . prk

k is the prime factorization of n, then by the Chinese
Remainder Theorem we have that

Z/nZ ∼= Z/pr1
1 Z ⊕ · · · ⊕ Z/prk

k Z. (4)

Decomposition (4) induces a natural R-isomorphism
( a, b

Z/nZ

) ∼=
( a, b

Z/pr1
1 Z

)
⊕ · · · ⊕

( a, b

Z/prk

k Z

)
. (5)

Consequently, if we denote by ω(n) the number of different primes di-
viding n and by νp(n) the p-adic order of n we obtain the following corollary
to Theorem 3.

Corollary 5. Let n be an odd integer. Then, the number of non R-isomorphic
generalized quaternion rings over Z/nZ is

2ω(n)
∏
p|n

(νp(n)2 + 1).
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