[go: up one dir, main page]

login
A339518
Odd composite integers m such that A006497(2*m-J(m,13)) == 3*J(m,13) (mod m), where J(m,13) is the Jacobi symbol.
4
15, 75, 105, 119, 165, 255, 375, 649, 1189, 1635, 1763, 1785, 1875, 2233, 2625, 3599, 3815, 4125, 4187, 5475, 5559, 5887, 6375, 6601, 6681, 7905, 8175, 9265, 9375, 9471, 11175, 11767, 11977, 12095, 12403, 12685, 12871, 13601, 14041, 14279, 15051, 16109, 16359
OFFSET
1,1
COMMENTS
The generalized Pell-Lucas sequences of integer parameters (a,b) defined by V(m+2)=a*V(m+1)-b*V(m) and V(0)=2, V(1)=a, satisfy V(k*p-J(p,D)) == V(k-1)*J(p,D) (mod p) whenever p is prime, k is a positive integer, b=-1 and D=a^2+4.
The composite integers m with the property V(k*m-J(m,D)) == V(k-1)*J(m,D) (mod m) are called generalized Pell-Lucas pseudoprimes of level k- and parameter a.
Here b=-1, a=3, D=13 and k=2, while V(m) recovers A006497(m).
REFERENCES
D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).
D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).
LINKS
Dorin Andrica, Vlad Crişan, and Fawzi Al-Thukair, On Fibonacci and Lucas sequences modulo a prime and primality testing, Arab Journal of Mathematical Sciences, 24(1), 9-15 (2018).
MATHEMATICA
Select[Range[3, 20000, 2], CoprimeQ[#, 13] && CompositeQ[#] && Divisible[LucasL[2*# - JacobiSymbol[#, 13], 3] - 3*JacobiSymbol[#, 13], #] &]
CROSSREFS
Cf. A006497, A071904, A339126 (a=3, b=-1, k=1).
Cf. A339517 (a=1, b=-1), A339519 (a=5, b=-1), A339520 (a=7, b=-1).
Sequence in context: A022675 A214453 A317657 * A296193 A135916 A211812
KEYWORD
nonn
AUTHOR
Ovidiu Bagdasar, Dec 07 2020
STATUS
approved