[go: up one dir, main page]

login
A339387
a(n) = Sum_{k=1..n} (lcm(n,k)/gcd(n,k) mod k).
2
0, 1, 1, 1, 1, 6, 1, 3, 1, 13, 1, 16, 1, 24, 30, 3, 1, 39, 1, 29, 31, 58, 1, 72, 1, 81, 10, 82, 1, 148, 1, 19, 120, 139, 93, 55, 1, 174, 88, 157, 1, 279, 1, 184, 168, 256, 1, 160, 1, 303, 282, 97, 1, 372, 106, 266, 181, 409, 1, 582, 1, 468, 211, 19, 285, 763, 1
OFFSET
1,6
COMMENTS
n divides a(n) iff n divides A339384(n) iff n divides A056789(n). For proof, consider the formulas for a(n) and A339384(n).
Conjecture: If a(n) = A339384(n), then n is squarefree. This appears to be true for at least the first 2000 terms.
If n is a squarefree semiprime (A006881), then a(n) = A339384(n) iff the smaller prime factor of n divides its larger prime factor + 1.
LINKS
FORMULA
a(p) = a(p^2) = 1 for prime p.
If n>4, then a(n) = A056789(n) - n * Sum_{k=1..floor(n/2)} floor(n/(gcd(n,k)^2)). For proof, just rewrite "mod" in terms of the floor-function, use the formulas lcm(n,k)*gcd(n,k) = n*k and gcd(n, k) = gcd(n, n-k) and split the sum into two equal parts.
If p is a prime and p>2, then a(2*p) = A339384(2*p) = 3 + p*(p-1)/2.
If p is prime then a(p^(2*n)) = a(p^(2*n-1)) = 1 + (1/2)*p^2*(p-1)*(p^(3*n-3)-1)/(p^3-1). In particular, a(p^(2*n+2)) = a(p^(2*n+1)) = A056789(p^n). This can be proved in a very similar fashion as the corresponding formulas of A339384(p^n) and A056789(p^n).
MAPLE
a:= n-> add(irem(n*k/igcd(n, k)^2, k), k=1..n):
seq(a(n), n=1..80); # Alois P. Heinz, Dec 03 2020
MATHEMATICA
Table[Sum[Mod[LCM[n, k]/GCD[n, k], k], {k, n}], {n, 67}] (* Stefano Spezia, Dec 02 2020 *)
PROG
(PARI) a(n) = sum(k=1, n, n*k/gcd(n, k)^2 % k); \\ Michel Marcus, Dec 09 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Sebastian Karlsson, Dec 02 2020
EXTENSIONS
More terms from Stefano Spezia, Dec 02 2020
STATUS
approved